QUANTUM
COMPUTING

roR COMPUTER
SCIENTISTS

Quantum Computing for Computer Scientists

The multidisciplinary field of quantum computing strives to exploit some
of the uncanny aspects of quantum mechanics to expand our computa-
tional horizons. Quantum Computing for Computer Scientists takes read-
ers on a tour of this fascinating area of cutting-edge research. Written
in an accessible yet rigorous fashion, this book employs ideas and tech-
niques familiar to every student of computer science. The reader is not
expected to have any advanced mathematics or physics background. Af-
ter presenting the necessary prerequisites, the material is organized to
look at different aspects of quantum computing from the specific stand-
point of computer science. There are chapters on computer architecture,
algorithms, programming languages, theoretical computer science, cryp-
tography, information theory, and hardware. The text has step-by-step
examples, more than two hundred exercises with solutions, and program-
ming drills that bring the ideas of quantum computing alive for today’s
computer science students and researchers.

Noson S. Yanofsky, PhD, is an Associate Professor in the Department
of Computer and Information Science at Brooklyn College, City Univer-
sity of New York and at the PhD Program in Computer Science at The
Graduate Center of CUNY.

Mirco A. Mannucci, PhD, is the founder and CEO of HoloMathics, LLC,
a research and development company with a focus on innovative mathe-
matical modeling. He also serves as Adjunct Professor of Computer Sci-
ence at George Mason University and the University of Maryland.

QUANTUM COMPUTING FOR
COMPUTER SCIENTISTS

Noson S. Yanofsky
Brooklyn College, City University of New York

and

Mirco A. Mannucci
HoloMathics, LLC

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521879965

© Noson S. Yanofsky and Mirco A. Mannucci 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.
Library of Congress Cataloging in Publication data

Yanofsky, Noson S., 1967-
Quantum computing for computer scientists / Noson S. Yanofsky and
Mirco A. Mannucci.
p- cm.
Includes bibliographical references and index.
ISBN 978-0-521-87996-5 (hardback)
1. Quantum computers. 1. Mannucci, Mirco A., 1960- II. Title.

QA76.889.Y35 2008
004.1-dc22 2008020507

ISBN 978-0-521-879965 hardback

Cambridge University Press has no responsibility for

the persistence or accuracy of URLSs for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521879965

Dedicated to
Moishe and Sharon Yanofsky
and
to the memory of
Luigi and Antonietta Mannucci

Wisdom is one thing: to know the thought by which
all things are directed through all things.

Ev 76 cogby, Enlotaotor Yvauny,
Gur, nUBepvaTon TaVIe DA TEVIWY.

Heraclitus of Ephesus (535-475 BCE)
as quoted in Diogenes Laertius’s
Lives and Opinions of Eminent Philosophers

Book IX, 1.

Contents

Preface xi
1 Complex Numbers 7
1.1 Basic Definitions 8

1.2 The Algebra of Complex Numbers 10

1.3 The Geometry of Complex Numbers 15

2 Complex Vector Spaces 29
2.1 C" as the Primary Example 30

2.2 Definitions, Properties, and Examples 34

2.3 Basis and Dimension 45

2.4 Inner Products and Hilbert Spaces 53

2.5 Eigenvalues and Eigenvectors 60

2.6 Hermitian and Unitary Matrices 62

2.7 Tensor Product of Vector Spaces 66

3 The Leap from Classical to Quantum 74
3.1 Classical Deterministic Systems 74

3.2 Probabilistic Systems 79

3.3 Quantum Systems 88

3.4 Assembling Systems 97

4 Basic Quantum Theory 103
4.1 Quantum States 103

4.2 Observables 115

4.3 Measuring 126

4.4 Dynamics 129

4.5 Assembling Quantum Systems 132

5 Architecture 138

5.1 Bits and Qubits 138

vii

viii

Contents

10

11

5.2 Classical Gates
5.3 Reversible Gates
5.4 Quantum Gates

Algorithms

6.1 Deutsch’s Algorithm

6.2 The Deutsch—-Jozsa Algorithm
6.3 Simon’s Periodicity Algorithm
6.4 Grover’s Search Algorithm
6.5 Shor’s Factoring Algorithm

Programming Languages

7.1 Programming in a Quantum World

7.2 Quantum Assembly Programming

7.3 Toward Higher-Level Quantum Programming

7.4 Quantum Computation Before Quantum Computers

Theoretical Computer Science

8.1 Deterministic and Nondeterministic Computations
8.2 Probabilistic Computations
8.3 Quantum Computations

Cryptography
9.1 Classical Cryptography
9.2 Quantum Key Exchange I: The BB84 Protocol
9.3 Quantum Key Exchange II: The B92 Protocol
9.4 Quantum Key Exchange I1I: The EPR Protocol
9.5 Quantum Teleportation

Information Theory

10.1 Classical Information and Shannon Entropy

10.2 Quantum Information and von Neumann Entropy
10.3 Classical and Quantum Data Compression

10.4 Error-Correcting Codes

Hardware

11.1 Quantum Hardware: Goals and Challenges
11.2 Implementing a Quantum Computer I: Ion Traps
11.3 Implementing a Quantum Computer II: Linear Optics
11.4 Implementing a Quantum Computer I1I: NMR
and Superconductors
11.5 Future of Quantum Ware

Appendix A Historical Bibliography of Quantum Computing

by Jill Cirasella
A.1 Reading Scientific Articles
A.2 Models of Computation

144
151
158

170

171
179
187
195
204

220

220
221
230
237

239

239
246
251

262

262
268
273
275
277

284

284
288
295
302

305

306
311
313

315
316

319
320

A3
A4
AS
A.6
AT

Quantum Gates

Quantum Algorithms and Implementations
Quantum Cryptography

Quantum Information

More Milestones?

Appendix B Answers to Selected Exercises

Appendix C Quantum Computing Experiments with MATLAB

C1
C2
C3

Playing with Matlab
Complex Numbers and Matrices
Quantum Computations

Appendix D Keeping Abreast of Qquantum News: Quantum

Computing on the Web and in the Literature

by Jill Cirasella

D.1
D2
D3

Keeping Abreast of Popular News
Keeping Abreast of Scientific Literature
The Best Way to Stay Abreast?

Appendix E Selected Topics for Student Presentations

E.1
E.2
E3
E4
E.S
E.6
E.7
E.8
E.9
E.10
E.11

Bibliography

Index

Complex Numbers

Complex Vector Spaces

The Leap from Classical to Quantum
Basic Quantum Theory
Architecture

Algorithms

Programming Languages
Theoretical Computer Science
Cryptography

Information Theory
Hardware

Contents

321
321
323
323
324

325

351
351
351
354

357

357
358
359

360
361
362
363
364
365
366
368
369
370
370
371

373
381

iX

Preface

Quantum computing is a fascinating new field at the intersection of computer sci-
ence, mathematics, and physics, which strives to harness some of the uncanny as-
pects of quantum mechanics to broaden our computational horizons. This book
presents some of the most exciting and interesting topics in quantum computing.
Along the way, there will be some amazing facts about the universe in which we live
and about the very notions of information and computation.

The text you hold in your hands has a distinct flavor from most of the other cur-
rently available books on quantum computing. First and foremost, we do not assume
that our reader has much of a mathematics or physics background. This book should
be readable by anyone who is in or beyond their second year in a computer science
program. We have written this book specifically with computer scientists in mind,
and tailored it accordingly: we assume a bare minimum of mathematical sophistica-
tion, a first course in discrete structures, and a healthy level of curiosity. Because this
text was written specifically for computer people, in addition to the many exercises
throughout the text, we added many programming drills. These are a hands-on, fun
way of learning the material presented and getting a real feel for the subject.

The calculus-phobic reader will be happy to learn that derivatives and integrals
are virtually absent from our text. Quite simply, we avoid differentiation, integra-
tion, and all higher mathematics by carefully selecting only those topics that are
critical to a basic introduction to quantum computing. Because we are focusing on
the fundamentals of quantum computing, we can restrict ourselves to the finite-
dimensional mathematics that is required. This turns out to be not much more than
manipulating vectors and matrices with complex entries. Surprisingly enough, the
lion’s share of quantum computing can be done without the intricacies of advanced
mathematics.

Nevertheless, we hasten to stress that this is a technical textbook. We are not
writing a popular science book, nor do we substitute hand waving for rigor or math-
ematical precision.

Most other texts in the field present a primer on quantum mechanics in all its
glory. Many assume some knowledge of classical mechanics. We do not make these
assumptions. We only discuss what is needed for a basic understanding of quantum

xi

xii

Preface

computing as a field of research in its own right, although we cite sources for learning
more about advanced topics.

There are some who consider quantum computing to be solely within the do-
main of physics. Others think of the subject as purely mathematical. We stress the
computer science aspect of quantum computing.

It is not our intention for this book to be the definitive treatment of quantum
computing. There are a few topics that we do not even touch, and there are several
others that we approach briefly, not exhaustively. As of this writing, the bible of
quantum computing is Nielsen and Chuang’s magnificent Quantum Computing and
Quantum Information (2000). Their book contains almost everything known about
quantum computing at the time of its publication. We would like to think of our
book as a useful first step that can prepare the reader for that text.

FEATURES

This book is almost entirely self-contained. We do not demand that the reader come
armed with a large toolbox of skills. Even the subject of complex numbers, which is
taught in high school, is given a fairly comprehensive review.

The book contains many solved problems and easy-to-understand descriptions.
We do not merely present the theory; rather, we explain it and go through several
examples. The book also contains many exercises, which we strongly recommend
the serious reader should attempt to solve. There is no substitute for rolling up one’s
sleeves and doing some work!

We have also incorporated plenty of programming drills throughout our text.
These are hands-on exercises that can be carried out on your laptop to gain a better
understanding of the concepts presented here (they are also a great way of hav-
ing fun). We hasten to point out that we are entirely language-agnostic. The stu-
dent should write the programs in the language that feels most comfortable. We
are also paradigm-agnostic. If declarative programming is your favorite method, go
for it. If object-oriented programming is your game, use that. The programming
drills build on one another. Functions created in one programming drill will be used
and modified in later drills. Furthermore, in Appendix C, we show how to make
little quantum computing emulators with MATLAB or how to use a ready-made
one. (Our choice of MATLAB was dictated by the fact that it makes very easy-to-
build, quick-and-dirty prototypes, thanks to its vast amount of built-in mathematical
tools.)

This text appears to be the first to handle quantum programming languages in a
significant way. Until now, there have been only research papers and a few surveys
on the topic. Chapter 7 describes the basics of this expanding field: perhaps some of
our readers will be inspired to contribute to quantum programming!

This book also contains several appendices that are important for further study:

B Appendix A takes readers on a tour of major papers in quantum computing.
This bibliographical essay was written by Jill Cirasella, Computational Sciences
Specialist at the Brooklyn College Library. In addition to having a master’s de-
gree in library and information science, Jill has a master’s degree in logic, for
which she wrote a thesis on classical and quantum graph algorithms. This dual
background uniquely qualifies her to suggest and describe further readings.

Preface

B Appendix B contains the answers to some of the exercises in the text. Other
solutions will also be found on the book’s Web page. We strongly urge students
to do the exercises on their own and then check their answers against ours.

B Appendix C uses MATLAB, the popular mathematical environment and an es-
tablished industry standard, to show how to carry out most of the mathematical
operations described in this book. MATLAB has scores of routines for manip-
ulating complex matrices: we briefly review the most useful ones and show how
the reader can quickly perform a few quantum computing experiments with al-
most no effort, using the freely available MATLAB quantum emulator Quack.

B Appendix D, also by Jill Cirasella, describes how to use online resources to keep
up with developments in quantum computing. Quantum computing is a fast-
moving field, and this appendix offers guidelines and tips for finding relevant
articles and announcements.

m Appendix E is a list of possible topics for student presentations. We give brief
descriptions of different topics that a student might present before a class of his
peers. We also provide some hints about where to start looking for materials to
present.

ORGANIZATION

The book begins with two chapters of mathematical preliminaries. Chapter 1 con-
tains the basics of complex numbers, and Chapter 2 deals with complex vector
spaces. Although much of Chapter 1 is currently taught in high school, we feel that
a review is in order. Much of Chapter 2 will be known by students who have had a
course in linear algebra. We deliberately did not relegate these chapters to an ap-
pendix at the end of the book because the mathematics is necessary to understand
what is really going on. A reader who knows the material can safely skip the first
two chapters. She might want to skim over these chapters and then return to them
as a reference, using the index and the table of contents to find specific topics.

Chapter 3 is a gentle introduction to some of the ideas that will be encountered
throughout the rest of the text. Using simple models and simple matrix multipli-
cation, we demonstrate some of the fundamental concepts of quantum mechanics,
which are then formally developed in Chapter 4. From there, Chapter 5 presents
some of the basic architecture of quantum computing. Here one will find the notions
of a qubit (a quantum generalization of a bit) and the quantum analog of logic gates.

Once Chapter 5 is understood, readers can safely proceed to their choice of
Chapters 6 through 11. Each chapter takes its title from a typical course offered in a
computer science department. The chapters look at that subfield of quantum com-
puting from the perspective of the given course. These chapters are almost totally
independent of one another. We urge the readers to study the particular chapter
that corresponds to their favorite course. Learn topics that you like first. From there
proceed to other chapters.

Figure 0.1 summarizes the dependencies of the chapters.

One of the hardest topics tackled in this text is that of considering two quan-
tum systems and combining them, or “entangled” quantum systems. This is done
mathematically in Section 2.7. It is further motivated in Section 3.4 and formally
presented in Section 4.5. The reader might want to look at these sections together.

xiii

Xiv

Preface

Introduction

[Bl L] [e] [

Figure 0.1. Chapter dependencies.

There are many ways this book can be used as a text for a course. We urge
instructors to find their own way. May we humbly suggest the following three plans
of action:

(1) A class that provides some depth might involve the following: Go through
Chapters 1,2, 3,4, and 5. Armed with that background, study the entirety of Chapter
6 (“Algorithms”) in depth. One can spend at least a third of a semester on that
chapter. After wrestling a bit with quantum algorithms, the student will get a good
feel for the entire enterprise.

(2) If breadth is preferred, pick and choose one or two sections from each of
the advanced chapters. Such a course might look like this: (1), 2, 3, 4.1, 4.4, 5, 6.1,
7.1, 9.1, 10.1, 10.2, and 11. This will permit the student to see the broad outline of
quantum computing and then pursue his or her own path.

(3) For a more advanced class (a class in which linear algebra and some mathe-
matical sophistication is assumed), we recommend that students be told to read
Chapters 1, 2, and 3 on their own. A nice course can then commence with Chapter 4
and plow through most of the remainder of the book.

If this is being used as a text in a classroom setting, we strongly recommend that
the students make presentations. There are selected topics mentioned in Appendix
E. There is no substitute for student participation!

Although we have tried to include many topics in this text, inevitably some oth-
ers had to be left out. Here are a few that we omitted because of space considera-
tions:

many of the more complicated proofs in Chapter 8,
results about oracle computation,

the details of the (quantum) Fourier transforms, and
the latest hardware implementations.

We give references for further study on these, as well as other subjects, throughout
the text.

Preface

ANCILLARIES

We are going to maintain a Web page for the text at
www.sci.brooklyn.cuny.edu/~noson/qctext.html/
The Web page will contain

m periodic updates to the book,

m links to interesting books and articles on quantum computing,

BE some answers to certain exercises not solved in Appendix B, and
B errata.

The reader is encouraged to send any and all corrections to
noson@sci.brooklyn.cuny.edu

Help us make this textbook better!

ACKNOLWEDGMENTS

Both of us had the great privilege of writing our doctoral theses under the gentle
guidance of the recently deceased Alex Heller. Professor Heller wrote the follow-
ing! about his teacher Samuel “Sammy” Eilenberg and Sammy’s mathematics:

As I perceived it, then, Sammy considered that the highest value in mathematics
was to be found, not in specious depth nor in the overcoming of overwhelming
difficulty, but rather in providing the definitive clarity that would illuminate its
underlying order.

This never-ending struggle to bring out the underlying order of mathematical
structures was always Professor Heller’s everlasting goal, and he did his best to pass
it on to his students. We have gained greatly from his clarity of vision and his view
of mathematics, but we also saw, embodied in a man, the classical and sober ideal of
contemplative life at its very best. We both remain eternally grateful to him.

While at the City University of New York, we also had the privilege of inter-
acting with one of the world’s foremost logicians, Professor Rohit Parikh, a man
whose seminal contributions to the field are only matched by his enduring com-
mitment to promote younger researchers’ work. Besides opening fascinating vis-
tas to us, Professor Parikh encouraged us more than once to follow new directions
of thought. His continued professional and personal guidance are greatly appre-
ciated.

We both received our Ph.D.’s from the Department of Mathematics in The
Graduate Center of the City University of New York. We thank them for providing
us with a warm and friendly environment in which to study and learn real mathemat-
ics. The first author also thanks the entire Brooklyn College family and, in partic-
ular, the Computer and Information Science Department for being supportive and
very helpful in this endeavor.

I See page 1349 of Bass et al. (1998).

XV

http://www.sci.brooklyn.cuny.edu/%E2%88%BCnoson/qctext.html/
mailto:noson@sci.brooklyn.cuny.edu

XVi

Preface

Several faculty members of Brooklyn College and The Graduate Center were
kind enough to read and comment on parts of this book: Michael Anshel, David
Arnow, Jill Cirasella, Dayton Clark, Eva Cogan, Jim Cox, Scott Dexter, Edgar
Feldman, Fred Gardiner, Murray Gross, Chaya Gurwitz, Keith Harrow, Jun
Hu, Yedidyah Langsam, Peter Lesser, Philipp Rothmaler, Chris Steinsvold, Alex
Sverdlov, Aaron Tenenbaum, Micha Tomkiewicz, Al Vasquez, Gerald Weiss, and
Paula Whitlock. Their comments have made this a better text. Thank you all!

We were fortunate to have had many students of Brooklyn College and The
Graduate Center read and comment on earlier drafts: Shira Abraham, Rachel
Adler, Ali Assarpour, Aleksander Barkan, Sayeef Bazli, Cheuk Man Chan, Wei
Chen, Evgenia Dandurova, Phillip Dreizen, C. S. Fahie, Miriam Gutherc, Rave
Harpaz, David Herzog, Alex Hoffnung, Matthew P. Johnson, Joel Kammet, Serdar
Kara, Karen Kletter, Janusz Kusyk, Tiziana Ligorio, Matt Meyer, James Ng, Severin
Ngnosse, Eric Pacuit, Jason Schanker, Roman Shenderovsky, Aleksandr Shnayder-
man, Rose B. Sigler, Shai Silver, Justin Stallard, Justin Tojeira, John Ma Sang Tsang,
Sadia Zahoor, Mark Zelcer, and Xiaowen Zhang. We are indebted to them.

Many other people looked over parts or all of the text: Scott Aaronson, Ste-
fano Bettelli, Adam Brandenburger, Juan B. Climent, Anita Colvard, Leon Ehren-
preis, Michael Greenebaum, Miriam Klein, Eli Kravits, Raphael Magarik, John
Maiorana, Domenico Napoletani, Vaughan Pratt, Suri Raber, Peter Selinger, Evan
Siegel, Thomas Tradler, and Jennifer Whitehead. Their criticism and helpful ideas
are deeply appreciated.

Thanks to Peter Rohde for creating and making available to everyone his MAT-
LAB g-emulator Quack and also for letting us use it in our appendix. We had a good
deal of fun playing with it, and we hope our readers will too.

Besides writing two wonderful appendices, our friendly neighborhood librar-
ian, Jill Cirasella, was always just an e-mail away with helpful advice and support.
Thanks, Jill!

A very special thanks goes to our editor at Cambridge University Press, Heather
Bergman, for believing in our project right from the start, for guiding us through this
book, and for providing endless support in all matters. This book would not exist
without her. Thanks, Heather!

We had the good fortune to have a truly stellar editor check much of the text
many times. Karen Kletter is a great friend and did a magnificent job. We also ap-
preciate that she refrained from killing us every time we handed her altered drafts
that she had previously edited.

But, of course, all errors are our own!

This book could not have been written without the help of my daughter, Hadas-
sah. She added meaning, purpose, and joy.
N.SY.

My dear wife, Rose, and our two wondrous and tireless cats, Ursula and Buster,
contributed in no small measure to melting my stress away during the long and
painful hours of writing and editing: to them my gratitude and love. (Ursula is a
scientist cat and will read this book. Buster will just shred it with his powerful claws.)

M.AM.

Introduction

THE FEATURES OF THE QUANTUM WORLD

In order to learn quantum computing, it is first necessary to become familiar with
some basic facts about the quantum world. In this introduction, some unique fea-
tures of quantum mechanics are introduced, as well as the way they influence the
tale we are about to tell.”

From Real Numbers to Complex Numbers

Quantum mechanics is different from most other branches of science in that it uses
complex numbers in a fundamental way. Complex numbers were originally created
as a mathematical curiosity: i = +/—1 was the asserted “imaginary” solution to the
polynomial equation x> = —1. As time went on, an entire mathematical edifice was
constructed with these “imaginary” numbers. Complex numbers have kept lonely
mathematicians busy for centuries, while physicists successfully ignored these ab-
stract creations. However, things changed with the systematic study of wave me-
chanics. After the introduction of Fourier analysis, researchers learned that a com-
pact way to represent a wave was by using functions of complex numbers. As it turns
out, this was an important step on the road to using complex numbers in quantum
theory. Early quantum mechanics was largely based on wave mechanics.

At first glance, we do not seem to experience complex numbers in the “real
world.” The length of a rod is a real number, not a complex number. The temper-
ature outside today is 73°, not (32 — 14i)°. The amount of time a chemical process
takes is 32.543 seconds, not —14.65i seconds. One might wonder what possible role
complex numbers can have in any discussion of the physical world. It will soon be-
come apparent that they play an important, indeed an essential, role in quantum
mechanics. We shall explore complex numbers in Chapters 1 and 2 of the text.

% This Introduction is not the proper place for technical details. Some of the concepts are covered in the
text and some of them can be found only in quantum mechanics textbooks. See the end of Chapter 4
for some recommendations of easy, yet detailed, introductions to quantum physics.

Introduction

From Single States to Superpositions of States

In order to survive in this world, human beings, as infants, must learn that every
object exists in a unique place and in a well-defined state, even when we are not
looking at it. Although this is true for large objects, quantum mechanics tells us that
it is false for objects that are very small. A microscopic object can “hazily” be in
more than one place at one time. Rather than an object’s being in one position or
another, we say that it is in a “superposition,” i.e., in some sense, it is simultaneously
in more than one location at the same time. Not only is spatial position subject to
such “haziness” but so are other familiar physical properties, like energy, momen-
tum, and certain properties that are unique to the quantum world, such as “spin.”

We do not actually see superposition of states. Every time we look, or more
properly, “measure,” a superposition of states, it “collapses” to a single well-defined
state. Nevertheless, before we measure it, it is in many states at the same time.

One is justified in greeting these claims with skepticism. After all, how can one
believe something different from what every infant knows? However, we will de-
scribe certain experiments that show that this is exactly what happens.

From Locality to Nonlocality

Central to modern science is the notion that objects are directly affected only by
nearby objects or forces. In order to determine why a phenomenon occurs at a cer-
tain place, one must examine all the phenomena and forces near’ that place. This
is called “locality,” i.e., the laws of physics work in a local way. One of the most
remarkable aspects of quantum mechanics is that its laws predict certain effects
that work in a nonlocal manner. Two particles can be connected or “entangled”
in such a way that an action performed on one of them can have an immediate ef-
fect on the other particle light-years away. This “spooky action at a distance,” to use
Einstein’s colorful expression, was one of the most shocking discoveries of quantum
mechanics.

From Deterministic Laws to Probabilistic Laws

To which specific state will a superposition of states collapse when it is measured?
Whereas in other branches of physics the laws are deterministic.* i.e., there is a
unique outcome to every experiment, the laws of quantum mechanics state that we
can only know the probability of the outcome. This, again, might seem dubious. It
was doubted by the leading researchers of the time. Einstein himself was skeptical
and coined the colorful expression “God does not play dice with the Universe” to
express this. However, because of repeated experimental confirmations, the proba-
bilistic nature of quantum mechanics is no longer in question.

3 By “near” we mean anything close enough to affect the object. In physics jargon, anything in the past
light cone of the object.
“ Statistical mechanics being one major exception.

The Implications of the Quantum World on Computer Science

From Certainty to Uncertainty

The laws of quantum mechanics also inform us that there are inherent limitations
to the amount of knowledge that one can ascertain about a physical system. The
primary example of such a limitation is the famous “Heisenberg’s uncertainty prin-
ciple.”

There are other important features of the quantum world that we shall not ex-
plore here. These different features were all motivating forces behind the advent of
quantum computing. Rather than an historical review of how these features affected
quantum computing, let us look at several areas in computer science and see how
the aforementioned features affected each of those areas.”

THE IMPLICATIONS OF THE QUANTUM WORLD
ON COMPUTER SCIENCE

Architecture

The concept of superposition will be used to generalize the notion of bit to its quan-
tum analog, the qubit. Whereas a bit can be in either one of two states, superposi-
tion will allow a qubit to be both states simultaneously. Putting many qubits together
gives us quantum registers. It is this superposition that is the basis for quantum com-
puting’s real power. Rather than being in one state at a time, a quantum computer
can be in many states simultaneously.

After generalizing the notion of bit, the notion of a gate that manipulates bits will
be extended to the quantum setting. We shall have quantum gates that manipulate
qubits. Quantum gates will have to follow the dynamics of quantum operations. In
particular, certain quantum operations are reversible, and hence certain quantum
gates will have to be reversible.®

Algorithms

The field of quantum algorithms uses superposition in a fundamental way. Rather
than having a computer in one state at a time, one employs that aspect of the quan-
tum world to place a quantum computer in many states simultaneously. One might
think of this as massive parallelism. This needs special care: we cannot measure the
computer while it is in this superposition because measuring it would collapse it to
a single position. Our algorithms will start with the quantum computer in a single
position. We shall then delicately place it in a superposition of many states. From
there, we manipulate the qubits in a specified way. Finally, (some of) the qubits are
measured. The measurement will collapse the qubits to the desired bits, which will
be our output.

5 For an historical view of quantum computing as seen through the major papers that launched the
subject, see Appendix A.

% It so happens that reversible computation has a long history predating quantum computing. This history
will be reviewed in due course.

Introduction

Entanglement will also play a role in quantum computing, as the qubits can
be entangled. By measuring some of them, others automatically reach the desired
position.

Consider searching for a particular object in an unordered array. A classical al-
gorithm examines the first entry in the array, then the second entry, and so on. The
algorithm stops when either the object is found or the end of the array is reached.
So for an array with n elements, in the worst-case scenario, an algorithm would have
to look at n entries of the array.

Now imagine a computer that uses superposition. Rather than having the ma-
chine look at this entry or that entry, let it look at all entries simultaneously. This
will result in a fantastic speedup. It turns out that such a quantum computer will be
able to find the object in /n queries to the array. This is one of the first quantum
algorithms and is called “Grover’s algorithm.”

Another algorithm that demonstrates the power and usefulness of quantum
computing is Shor’s algorithm for factoring numbers. The usual algorithm to fac-
tor a number involves looking at many possible factors of the number until a true
factor is found. Shor’s algorithm uses superposition (and a touch of number theory)
to look at many possible factors simultaneously.

Shor’s algorithm is partially based on earlier quantum algorithms that were
created to solve slightly contrived problems. Although these earlier algorithms
(Deutch, Deutch-Joza, and Simon’s periodicity algorithm) solve artificial problems,
we shall study them so that we can learn different techniques of quantum software
design.

Programming Languages

Algorithms must eventually develop into concrete software if they are to be useful
in real-life applications. The bridge that makes this step possible is programming.
Quantum computing is no exception: researchers in the field have started designing
quantum programming languages that will enable future generations of program-
mers to take control of quantum hardware and implement new quantum algorithms.
We shall introduce a brief survey of programming languages (for the first time, to
our knowledge, in a quantum computing textbook), starting with quantum assem-
bler and progressing to high-level quantum programming, in particular quantum
functional programming.

Theoretical Computer Science

The goal of theoretical computer science is to formalize what engineers have done,
and more important, to formalize what the engineers cannot do. Such an analysis
is carried out by describing and classifying theoretical models of computation. The
superposition of quantum mechanics has a vague feel of nondeterminism that theo-
retical computer scientists have used (of course, nondeterminism is a purely fictional
concept and superposition is an established fact of the physical world). The indeter-
minacy of which state the superposition will collapse to is related to a probabilistic
computation. We will be led to generalize the definition of a Turing machine to that

The Implications of the Quantum World on Computer Science

of a quantum Turing machine. With a clear definition in place, we will be able to
classify and relate all these different ideas.

We shall not only be interested in what a quantum Turing machine can do. We
are also interested in the question of efficiency. This brings us to quantum com-
plexity theory. Definitions of quantum complexity classes will be given and will be
related to other well-known complexity classes.

Cryptography

Indeterminacy and superposition will be used in quantum versions of public key dis-
tribution protocols. The fact that a measurement disturbs a quantum state shall be
used to detect the presence of an eavesdropper listening in on (measuring) a com-
munication channel. Such detection is not easily achievable in classical cryptogra-
phy. Whereas classical public key distribution protocols rely on the fact that certain
inverse functions are computationally hard to calculate, quantum key distribution
protocols are based on the fact that certain laws of quantum physics are true. It is
this strength that makes quantum cryptography so interesting and powerful.

There is also a public key protocol that uses entanglement in a fundamental
way. Related to cryptography is teleportation. In teleportation, a state of a system
is transported as opposed to a message. The teleportation protocol uses entangled
particles that can be separated across the universe.

The most amazing part of quantum cryptography is that it is not only a theoret-
ical curiosity. There are, in fact, actual commercially available quantum cryptogra-
phy devices currently in use.

Information Theory

It is impossible to discuss topics such as compression, transmission, and storage,
without mentioning information. Information theory, now an established field, was
introduced by Claude Shannon in the forties, and has developed a vast array of
techniques and ideas that find their use in computer science and engineering. As
this book deals with quantum computation, it is imperative that we ask: is there a
satisfactory notion of quantum information? What is the information content en-
coded by a stream of qubits? It turns out that such notions exist. Just as classical
information is related to measures of order (the so-called entropy of a source of sig-
nals), quantum information is paired with the notion of quantum entropy. We shall
explore, chiefly through examples, how order and information in the quantum realm
differ from familiar notions, and how these differences can be exploited to achieve
new results in data storage, transmission, and compression.

Hardware

There is no future for quantum computing without quantum computers. We are go-
ing to spell out the challenges behind the implementation of quantum machines, es-
pecially one that is embedded in the very nature of the quantum world: decoherence.

Introduction

We shall also describe the desirable features that a prospective quantum machine
must exhibit in order to be useful.

A few proposals for quantum hardware will be showcased. The emphasis here
is not on technical details (this is a book for computer scientists, not a quantum
engineering handbook!). Instead, our goal is to convey the gist of these proposals
and their chances of success as they are currently assessed.

1

Complex Numbers

You, have you really understood all that stuff?
What?
The story of imaginary numbers?
Robert Musil, The Confusions of Young
Torless (1907)!

Complex numbers lie at the very core of quantum mechanics and are therefore ab-
solutely essential to a basic understanding of quantum computation. In this chapter
we present this important system of numbers from both the algebraic and the geo-
metric standpoints. Section 1.1 presents some motivation and the basic definitions.
The algebraic structure and operations on complex numbers are given in Section 1.2.
The chapter concludes with Section 1.3, where complex numbers are presented from
a geometric point of view and advanced topics are discussed. Our hope is that this
chapter will help you get a little closer to what Sir Roger Penrose has very aptly
called the “magic of complex numbers” (Penrose, 2005).

Reader Tip. Many readers will find that they are already familiar with some of the
material presented in this chapter. The reader who feels confident in her compre-
hension of the fundamental knowledge of complex numbers, the basic operations,
and their properties can safely move on to later chapters. We suggest, though, that
you at least skim through the following pages to see what topics are covered. Return
to Chapter 1 as a reference when needed (using the index to find specific topics). ©

! For the German-speaking reader, here is the original text (the translation at the beginning is ours):

Du, hast du das vorhin ganz verstanden?
Was?
Die Geschichte mit den imagindren Zahlen?

Musil’s Torless is a remarkable book. A substantial part is dedicated to the struggle of young
Torless to come to grips with mathematics, as well as with his own life. Definitely recommended!

8 Complex Numbers

1.1 BASIC DEFINITIONS

The original motivation for the introduction of complex numbers was the theory of
algebraic equations, the part of algebra that seeks solutions of polynomial equations.
It became readily apparent that there are plenty of cases in which no solution among
familiar numbers can be found. Here is the simplest example:

x> 4+1=0. (1.1)

Indeed, any possible x*> would be positive or zero. Adding 1 ends up with some
quantity to the left that is strictly positive; hence, no solution exists.

Exercise 1.1.1 Verify that the equation x* + 2x? +1 = 0 has no solution among
the real numbers. (Hint: Factor the polynomial.) |

The aforementioned argument seems to dash any hope of solving Equation (1.1).
But does it?

Before building any new number system, it pays to remind ourselves of other
sets of numbers that we usually work with

positive numbers, P = {1,2,3,...};

natural numbers, N ={0,1,2,3,...};

integers (or whole numbers), Z ={...,-3,-2,-1,0,1,2,3,...};
rational numbers, Q = {2|m € Z, n € P};

real numbers, R = Q U{ﬁenﬁ},

In none of these familiar number systems can a valid solution to Equation (1.1) be
found. Mathematics often works around difficulties by simply postulating that such
a solution, albeit unknown, is available somewhere. Let us thus boldly assume that
this enigmatic solution does indeed exist and determine what it looks like: Equa-
tion (1.1) is equivalent to

x?=-1. (1.2)

What does this state? That the solution of Equation (1.1) is a number such that its
square is —1, i.e., a number i such that

i’=—-1 or i=+-1. (1.3)

Of course we know that no such number exists among known (i.e., real) numbers,
but we have already stated that this is not going to deter us. We will simply allow this
new creature into the realm of well-established numbers and use it as it pleases us.
Because it is imaginary, it is denoted i. We will impose on ourselves an important
restriction: aside from its weird behavior when squared, i will behave just like an
ordinary number.

Example 1.1.1 What is the value of i3? We shall treat i as a legitimate number, so
P=ixixi=@)xi=—-1xi=-i. (1.4)

O

1.1 Basic Definitions

Exercise 1.1.2 Find the value of i '°. (Hint: Calculate i, i?,i°, i*, and i°. Find a pat-
tern.) [|

In opening the door to our new friend i, we are now flooded with an entire
universe of new numbers: to begin with, all the multiples of i by a real number, like
2 x i. These fellows, being akin to i, are known as imaginary numbers. But there is
more: add a real number and an imaginary number, for instance, 3 + 5 x i, and you
get a number that is neither a real nor an imaginary. Such a number, being a hybrid
entity, is rightfully called a complex number.

Definition 1.1.1 A complex number is an expression
c=a+bxi=a+bi, (1.5)

where a, b are two real numbers; a is called the real part of c, whereas b is its imaginary
part. The set of all complex numbers will be denoted as C. When the x is understood,
we shall omit it.

Complex numbers can be added and multiplied, as shown next.

Example 1.1.2 Let ¢; =3 —i and ¢; =1+ 4i. We want to compute ¢; + ¢; and
C1 X €.

a+eo=3-i+1+4=0CB+1)+(-1+4)i=4+3i (1.6)

Multiplying is not as easy. We must remember to multiply each term of the first
complex number with each term of the second complex number. Also, remember
that i = —1.

axeo=0B-i)x0+4)=0CBx1)+@x4di)+ (=i x1)+ (=i x 4i)

=0B4+4)+(-1+12)i =7+ 11i. (1.7)
O
Exercise 1.1.3 Letci = -3 +iandc, =2 —4i.Calculate c; +c;andcy x ;. N

With addition and multiplication we can get all polynomials. We set out to find a
solution for Equation (1.1); it turns out that complex numbers are enough to provide
solutions for al/l polynomial equations.

Proposition 1.1.1 (Fundamental Theorem of Algebra). Every polynomial equa-
tion of one variable with complex coefficients has a complex solution.

Exercise 1.1.4 Verify that the complex number —1 + i is a solution for the polyno-
mial equation x? 4+ 2x +2 = 0. |

This nontrivial result shows that complex numbers are well worth our attention.
In the next two sections, we explore the complex kingdom a little further.

Programming Drill 1.1.1 Write a program that accepts two complex numbers and
outputs their sum and their product.

10

Complex Numbers

1.2 THE ALGEBRA OF COMPLEX NUMBERS

Admittedly, the fact that we know how to handle them does not explain away the
oddity of complex numbers. What are they? What does it mean that i squared is
equal to —1?

In the next section, we see that the geometrical viewpoint greatly aids our in-
tuition. Meanwhile, we would like to convert complex numbers into more familiar
objects by carefully looking at how they are built.

Definition 1.1.1 tells us two real numbers correspond to each complex number:
its real and imaginary parts. A complex number is thus a two-pronged entity, carry-
ing its two components along. How about defining a complex number as an ordered
pair of reals?

¢+ (a,b). (1.8)
Ordinary real numbers can be identified with pairs (a, 0)

ar+— (a,0), (1.9)
whereas imaginary numbers will be pairs (0, b). In particular,

i— (0,1). (1.10)
Addition is rather obvious — it adds pairs componentwise:

(a1, b1) + (a2, b)) = (a1 + az, by + by). (1.11)
Multiplication is a little trickier:

(a1, b1) x (a2, b2) = (a1, b1)(az, br) = (maz — biby, a1by + azby). (1.12)
Does this work? Multiplying i by itself gives

ixi=(0,1)x(0,1)=(0-1,04+0)=(-1,0), (1.13)

which is what we wanted.
Using addition and multiplication, we can write any complex number in the usual
form:

¢ = (a,b) = (a,0) + (0, b) = (a, 0) + (b, 0) x (0, 1) = a + bi. (1.14)

We have traded one oddity for another: i was previously quite mysterious,
whereas now it is just (0, 1). A complex number is nothing more than an ordered
pair of ordinary real numbers. Multiplication, though, is rather strange: perhaps the
reader would have expected a componentwise multiplication, just like addition. We
shall see later that by viewing complex numbers through yet another looking glass
the strangeness linked to their multiplication rule will fade away.

Example 1.2.1 Let ¢; = (3, -2) and ¢; = (1, 2). Let us multiply them using the
aforementioned rule:

axe=06x1-(-2)x2,-2x14+2x3)
=0B+4,-24+6)=(7,4)=7+4i. (1.15)

1.2 The Algebra of Complex Numbers

Exercise 1.2.1 Letc¢; = (-3, —1) and ¢; = (1, —2). Calculate their product. [|

So far, we have a set of numbers and two operations: addition and multiplication.
Both operations are commutative, meaning that for arbitrary complex numbers c;
and ¢,

g+ =c+cC (1.16)
and
C1 X C=0C) X (. (1.17)

Both operations are also associative:

(ca+c)+e=c+(c2+c3) (1.18)
and

(a1 X) x 3 =¢1 x (€3 X €3). (1.19)
Exercise 1.2.2 Verify that multiplication of complex numbers is associative. |

Moreover, multiplication distributes over addition: for all ¢y, ¢;, c3, we have
Cc1 X (Cz + C3) = (C1 X C2) + (Cl X C3). (120)

Let us verify this property: first we write the complex numbers as pairs ¢; = (a1, by),
¢ = (a3, by), and c3 = (a3, b3). Now, let us expand the left side

1 x (ca + ¢3) = (a1, by) x ((az, b2) + (az, b3))
= (a1, b1) x (a2 + a3, b + b3)
= (a1 x (a2 + a3) — by x (by + b3),
ar x (by + b3) + by x (a2 + a3))
= (a1 x ay + a1 x a3 — by x by — by x bs,
a; X by + a1 x b3+ by x ay + by x a3). (1.21)
Turning to the right side of Equation (1.20) one piece at a time gives
1 xc=(ay xay—by xby,a; x by +a; x by) (1.22)
c1 xc3= (a1 x a3 — by x by, a1 x b3 +az x by); (1.23)
summing them up we obtain
cpxctcerxe3=(ar xay—by xby+a; xazs — by x bs,
a; X by +ay x by +ay x by +as x by), (1.24)

which is precisely what we got in Equation (1.21).
Having addition and multiplication, we need their complementary operations:
subtraction and division.

11

12

Complex Numbers

Subtraction is straightforward:
¢ —c=(a1,b) — (a2, b)) = (a1 — az, by — by); (1.25)

in other words, subtraction is defined componentwise, as expected.
As for division, we have to work a little: If

(x.y) = 22 2;, (1.26)
then by definition of division as the inverse of multiplication

(a1, b1) = (x, y) x (a2, b) (1.27)
or

(a1, b1) = (axx — by, apy + byx). (1.28)
So we end up with

(1) a = amx — byy, (1.29)

(2) by = ayy + byx. (1.30)

To determine the answer, we must solve this pair of equations for x and y. Multiply
both sides of (1) by a, and both sides of (2) by b,. We end up with

1) aja; = a3x — byayy, (1.31)

(2) bbby = aybyy + bax. (1.32)
Now, let us add (1) and (2') to get

aay + biby = (a3 + b3)x. (1.33)

Solving for x gives us
bib

x = alai—w (1.34)

a; + b;

We can perform the same trick for y by multiplying (1) and (2) by b, and —ay,
respectively, and then summing. We obtain

@by —aib
= % (1.35)
a; + b;
In more compact notation, we can express this equation as
a+bii amar+biby | aby —aibs, (136)

a+bi ad+ b a3 + b3

Notice that both x and y are calculated using the same denominator, namely,
as + bs. We are going to see what this quantity means presently. In the meantime,
here is a concrete example.

Example 1.2.2 Letc; = -2+ and ¢; = 1 + 2i. We will compute % In this case,
a; = -2, by =1, a, =1, and b, = 2. Therefore,

a;+b5=1>4+22=5, (1.37)

1.2 The Algebra of Complex Numbers

aja; +bibh=-2x1+1x2=0, (138)

azbl—a1b2=1Xl—(—2)X2=1+4=5. (139)

The answer is thus (2, 2) = (0, 1) = . O

Exercise 1.2.3 Letc; = 3i and ¢, = —1 — i. Calculate % [|
2

Now, let us go back to the mysterious denominator in the quotient formula in
Equation (1.36). Real numbers have a unary operation, the absolute value, given by

lal = +va?. (1.40)
We can define a generalization of this operation” to the complex domain by letting
lc| = |a + bi| = +Va* + b2. (1.41)
This quantity is known as the modulus of a complex number.
Example 1.2.3 What is the modulusof c =1 —i?
lel =1 —i] = 4+4/12 + (=1)2 = V2. (1.42)
U

The geometric meaning of the modulus is discussed in the next section. For now,
we remark that the quantity in the denominator of the quotient of two complex
numbers is nothing more than the modulus squared of the divisor:

c]* = a® + b2 (1.43)

This modulus must be different from zero, which always happens unless the divisor
is itself zero.

Exercise 1.2.4 Calculate the modulus of c =4 — 3i. |

Exercise 1.2.5 Verify that given two arbitrary complex numbers ¢; and c¢;, the fol-
lowing equality always holds:

lc1llea] = [ereal. (1.44)
| |

Exercise 1.2.6 Prove that

le1 + c2l < leil + ezl (1.45)
When are they, in fact, equal? (Hint: Square both sides.) |

Exercise 1.2.7 Show that for all ¢ € C, we have ¢ + (0,0) = (0, 0) + ¢ = c. That is,
(0, 0) is an additive identity. [|

2 The definition given in Equation (1.40) is entirely equivalent to the more familiar one: |a| = a if a > 0,
and |a| = —aifa < 0.

13

14

Complex Numbers

Exercise 1.2.8 Show that for all ¢ € C we have ¢ x (1,0) = (1,0) x ¢ = c. That is,
(1, 0) is a multiplicative identity. |

In summation, we have defined a new set of numbers, C, endowed with four
operations, verifying the following properties:

(i) Addition is commutative and associative.
(i) Multiplication is commutative and associative.
(ili) Addition has an identity: (0, 0).
(iv) Multiplication has an identity: (1, 0).
(v) Multiplication distributes with respect to addition.
(vi) Subtraction (i.e., the inverse of addition) is defined everywhere.
(vii) Division (i.e., the inverse of multiplication) is defined everywhere except
when the divisor is zero.

A set with operations satisfying all these properties is called a field. C is a field,
just like R, the field of real numbers. In fact, via the identification that associates
a real number to a complex number with 0 as the imaginary component, we can
think of R as a subset® of C. R sits inside C; but C is a vast field, so vast, indeed,
that all polynomial equations with coefficients in C have a solution in C itself. R
is also a roomy field, but not enough to enjoy this last property (remember Equa-
tion (1.1)). A field that contains all solutions for any of its polynomial equations is
said to be algebraically complete. C is an algebraically complete field, whereas R
is not.

There is a unary operation that plays a crucial role in the complex domain. The
reader is familiar with “changing signs” of real numbers. Here, however, there are
two real numbers attached to a complex number. Therefore, there are three ways
of changing sign: either change the sign of the real part or change the sign of the
imaginary part, or both. Let us analyze them one by one.

Changing both signs of the complex number is done by multiplying by the num-
ber —1 = (-1, 0).

Exercise 1.2.9 Verify that multiplication by (—1, 0) changes the sign of the real and
imaginary components of a complex number. |

Changing the sign of the imaginary part only is known as conjugation.” If ¢ =
a + bi is an arbitrary complex number, then the conjugate of ¢ is ¢ = a — bi. Two
numbers related by conjugation are said to be complex conjugates of each other.

Changing the sign of the real part (c —> —¢) has no particular name, at least in
the algebraic context.’

The following exercises will guide you through conjugation’s most important
properties.

3 A subset of a field that is a field in its own right is called a subfield: R is a subfield of C.

4 Tts “geometric” name is real-axis reflection. The name becomes obvious in the next section.

5 In the geometric viewpoint, it is known as imaginary-axis reflection. After reading Section 1.3, we invite
you to investigate this operation a bit further.

1.3 The Geometry of Complex Numbers

Exercise 1.2.10 Show that conjugation respects addition, i.e.,
1+ ¢ =c + . (1.46)
[|

Exercise 1.2.11 Show that conjugation respects multiplication, i.e.,

CLXC=c1 X 0. (1.47)

Notice that the function
c—>C (1.48)

given by conjugation is bijective, i.e., is one-to-one and onto. Indeed, two different
complex numbers are never sent to the same number by conjugation. Moreover,
every number is the complex conjugate of some number. A function from a field to
a field that is bijective and that respects addition and multiplication is known as a
field isomorphism. Conjugation is thus a field isomorphism of C to C.

Exercise 1.2.12 Consider the operation given by flipping the sign of the real part.
Is this a field isomorphism of C? If yes, prove it. Otherwise, show where it fails. W

We cannot continue without mentioning another property of conjugation:
cx¢=lc. (1.49)

In words, the modulus squared of a complex number is obtained by multiplying
the number with its conjugate. For example,

(B+2i)x 3-2i)=3>+2>=13 = |3+ 2i]%. (1.50)

We have covered what we need from the algebraic perspective. We see in the
next section that the geometric approach sheds some light on virtually all topics
touched on here.

Programming Drill 1.2.1 Take the program that you wrote in the last programming
drill and make it also perform subtraction and division of complex numbers. In ad-
dition, let the user enter a complex number and have the computer return its modulus
and conjugate.

1.3 THE GEOMETRY OF COMPLEX NUMBERS

As far as algebra is concerned, complex numbers are an algebraically complete field,
as we have described them in Section 1.2. That alone would render them invaluable
as a mathematical tool. It turns out that their significance extends far beyond the
algebraic domain and makes them equally useful in geometry and hence in physics.
To see why this is so, we need to look at a complex number in yet another way.
At the beginning of Section 1.2, we learned that a complex number is a pair of real

15

16 Complex Numbers

Imaginary

. Real

Figure 1.1. Complex plane.

numbers. This suggests a natural means of representation: real numbers are placed
on the line, so pairs of reals correspond to points on the plane, or, equivalently,
correspond to vectors starting from the origin and pointing to that point (as shown
in Figure 1.1).

In this representation, real numbers (i.e., complex numbers with no imaginary
part) sit on the horizontal axis and imaginary numbers sit on the vertical axis. This
plane is known as the complex plane or the Argand plane.

Through this representation, the algebraic properties of the complex numbers
can be seen in a new light. Let us start with the modulus: it is nothing more than the
length of the vector. Indeed, the length of a vector, via Pythagoras’ theorem, is the
square root of the sum of the squares of its edges, which is precisely the modulus, as
defined in the previous section.

Example 1.3.1 Consider the complex numbers ¢ = 3 + 4i depicted in Figure 1.2.
The length of the vector is the hypotenuse of the right triangle whose edges have
length 3 and 4, respectively. Pythagoras’ theorem gives us the length as

length(c) = V42 + 32 = /16 + 9 = V25 = 5. (1.51)

This is exactly the modulus of c. O

Figure 1.2. Vector 3 + 4i.

1.3 The Geometry of Complex Numbers

Figure 1.3. Parallelogram rule.

Next comes addition: vectors can be added using the so-called parallelogram rule
illustrated by Figure 1.3. In words, draw the parallelogram whose parallel edges are
the two vectors to be added; their sum is the diagonal.

Exercise 1.3.1 Draw the complex numbers ¢; =2 —i and ¢; = 1 4 in the com-
plex plane, and add them using the parallelogram rule. Verify that you would get
the same result as adding them algebraically (the way we learned in Section 1.2). B

Subtraction too has a clear geometric meaning: subtracting ¢, from c; is the same
as adding the negation of c¢;, i.e., —c;, to c¢;. But what is the negation of a vector?
It is just the vector of the same length pointed in the opposite direction (see Fig-
ure 1.4).

Exercise 1.3.2 Let ¢; =2 —1i and ¢; =1 +i. Subtract ¢, from ¢; by first draw-
ing —c; and then adding it to ¢; using the parallelogram rule. |

To give a simple geometrical meaning to multiplication, we need to develop yet
another characterization of complex numbers. We saw a moment ago that for every
complex number we can draw a right triangle, whose edges’ lengths are the real and
imaginary parts of the number and whose hypotenuse’s length is the modulus. Now,
suppose someone tells us the modulus of the number what else do we need to know
to draw the triangle? The answer is the angle at the origin.

Figure 1.4. Subtraction.

17

18

Complex Numbers
The modulus p and the angle 6 (notice: two real numbers, as before) are enough
to uniquely determine the complex number.
(a,b) —> (p,). (1.52)

We know how to compute p from a, b:

p = J(a® + b?). (1.53)

0 is also easy, via trigonometry:

6 = tan™! (g) . (1.54)

The (a, b) representation is known as the Cartesian representation of a complex
number, whereas (p, 0) is the polar representation.

We can go back from polar to Cartesian representation, again using trigono-
metry:

a = pcos(9), b = psin(0). (1.55)
Example 1.3.2 Letc =1+ i. What is its polar representation?

p=VI2+12=V2 (1.56)

1
=tan"! (=) =tan"'(1) = il (1.57)
1 4
c is the vector of length +/2 from the origin at an angle of 7 radians, or 45°. O

Exercise 1.3.3 Draw the complex number given by the polar coordinates p = 3
and 6 = 5. Compute its Cartesian coordinates. |

Programming Drill 1.3.1 Write a program that converts a complex number from its
Cartesian representation to its polar representation and vice versa.

Before moving on, let us meditate a little: what kind of insight does the polar
representation give us? Instead of providing a ready-made answer, let us begin with
a question: how many complex numbers share exactly the same modulus? A mo-
ment’s thought will tell us that for a fixed modulus, say, p = 1, there is an entire
circle centered at the origin (as shown in Figure 1.5).

Figure 1.5. Phase 6.

1.3 The Geometry of Complex Numbers

Figure 1.6. Points on a line with the same
phase.

So, here comes the angle: imagine the circle as your watch, and the complex
number as the needle. Angle 6 tells us the “time.” The “time” is known in physics
and engineering as the phase, whereas the length of the “needle” (i.e., the modulus)
is the magnitude of the number.

Definition 1.3.1 A complex number is a magnitude and a phase.

The ordinary positive reals are just complex numbers such that their phase is
zero. The negative reals have phase 7. By the same token, imaginary numbers are
numbers with constant phase equal to 5 (positive imaginary) or 37” (negative imag-
inary).

Given a constant phase, there is an entire line of complex numbers having that
phase as depicted in Figure 1.6.

Observe that a complex number has a unique polar representation only if we
confine the phase between 0 and 27:

0<6<2n (1.58)

(and the p > 0). If we restrict 6 in this fashion, though, we cannot in general add an-
gles (the sum may be bigger than 27). A better course is to let the angle be anything
and reduce it modulo 27:

6, = 0, if and only if 6, = 6; + 27k, for some integer k. (1.59)

Two complex numbers in polar representations will be identical if their magni-
tude is the same and if the angles are the same modulo 27, as shown by the following
example.

Example 1.3.3 Are the numbers (3, —7) and (3, =) the same? Indeed they are:
their magnitude is the same and their phases differ by (-7) — 7 = —27 = (—1)2~7.
g

19

20

Complex Numbers

We are now ready for multiplication: given two complex numbers in polar co-
ordinates, (p1, 61) and (p2, 62), their product can be obtained by simply multiplying
their magnitude and adding their phase:

(o1, 61) x (02, 602) = (p1p2, 61 + 62). (1.60)

Example 1.3.4 Letc; =147 and ¢; = —1 +i. Their product, according to the al-
gebraic rule, is

cer=1+i)(=1+i)=-2+0i = 2. (1.61)

Now, let us take their polar representation

o= (ﬁ %) 0= (ﬁ 3%) (1.62)

(Carry out the calculations!) Therefore, their product using the rule described ear-
lier is

3
clep = <x/§ x V2, % + %) = (2, 7). (1.63)
If we revert to its Cartesian coordinates, we get
(2 x cos(),2 x sin()) = (-2, 0), (1.64)

which is precisely the answer we arrived at with the algebraic calculation in Equa-
tion (1.61).
Figure 1.7 is the graphical representation of the two numbers and their product.
As you can see, we simply rotated the first vector by an angle equal to the phase
of the second vector and multiplied its length by the length of the second vector. [

Exercise 1.3.4 Multiply ¢c; = —2 — i and ¢; = —1 — 2i using both the algebraic and
the geometric method; verify that the results are identical. |

Reader Tip. Most of the rest of this chapter are basic ideas in complex numbers;
however, they will not really be used in the text. The part on roots of unity will arise
in our discussion of Shor’s algorithm (Section 6.5). The rest is included for the sake

iK

—-1+i | 1+i

-2+0i

i.

Figure 1.7. Two complex numbers
and their product.

1.3 The Geometry of Complex Numbers

cxi

Figure 1.8. Multiplication by i.

of completeness. The restless reader can safely skim the rest of this chapter on the
first reading. o

We have implicitly learned an important fact: multiplication in the complex do-

main has something to do with rotations of the complex plane. Indeed, observe just
what happens by left or right multiplication by i:

cH>c X I. (1.65)

i has modulus 1, so the magnitude of the result is exactly equal to that of the starting
point. The phase of i is 7, so multiplying by i has the net result of rotating the
original complex number by 90°, a right angle. The same happens when we multiply
any complex number; so we can safely conclude that multiplication by i is a right-

angle counterclockwise rotation of the complex plane, as shown in Figure 1.8.

Exercise 1.3.5 Describe the geometric effect on the plane obtained by multiplying
by a real number, i.e., the function

¢ +—> ¢ X ry, (1.66)

where r is a fixed real number. [|

Exercise 1.3.6 Describe the geometric effect on the plane obtained by multiplying
by a generic complex number, i.e., the function

¢ —> ¢ X ¢, (1.67)

where ¢y is a fixed complex number. |

Programming Drill 1.3.2 [f you like graphics, write a program that accepts a small
drawing around the origin of the complex plane and a complex number. The program
should change the drawing by multiplying every point of the diagram by a complex
number.

21

22

Complex Numbers

Now that we are armed with a geometric way of looking at multiplication, we can
tackle division as well. After all, division is nothing more than the inverse operation
of multiplication. Assume that

1 = (,01, 91) and C = (,02, 92), (168)

are two complex numbers in polar form; what is the polar form of i—;? A moment’s
thought tells us that it is the number

a_ (ﬂ, 6 — 92> , (1.69)
(&) P2

In words, we divide the magnitudes and subtract the angles.

Example 1.3.5 Letc; = —1+3i and ¢; = —1 — 4i. Let us calculate their polar co-
ordinates first:

€ = <,/(—1)2 + 32, tan™"! (_%)) = (/10, tan~'(=3)) = (3.1623, 1.8925),

(1.70)
—4
0= < (=1)? + (=4)% tan™ <_1>> = (v/17, tan"'(4)) = (4.1231, —1.8158),
(1.71)
therefore, in polar coordinates the quotient is

1 3.1623
—=-—=—,1.8925 - (—1.81 - (0. . _ L7
& (4.1231’ 8925 - (-18 58)) (0.7670, 3.7083) (1.72)
O

Exercise 1.3.7 Divide 2 + 2i by 1 — i using both the algebraic and the geometrical
method and verify that the results are the same.]

You may have noticed that in Section 1.2, we have left out two important oper-
ations: powers and roots. The reason was that it is much easier to deal with them in
the present geometric setting than from the algebraic viewpoint.

Let us begin with powers. If ¢ = (p, 0) is a complex number in polar form and n
a positive integer, its nth power is just

" = (p", nd), (1.73)

because raising to the nth power is multiplying n times. Figure 1.9 shows a complex
number and its first, second, and third powers.

Exercise 1.3.8 Let ¢ =1 —i. Convert it to polar coordinates, calculate its fifth
power, and revert the answers to Cartesian coordinates. |

What happens when the base is a number of magnitude 1? Its powers will also
have magnitude 1; thus, they will stay on the same unit circle. You can think of
the various powers 1,2, ... as time units, and a needle moving counterclockwise at

1.3 The Geometry of Complex Numbers

Figure 1.9. A complex number and its square and cube.

constant speed (it covers exactly 6 radians per time unit, where 0 is the phase of the
base).

Let us move on to roots. As you know already from high-school algebra, a root
is a fractional power. For instance, the square root means raising the base to the
power of one-half; the cube root is raising to the power of one-third; and so forth.
The same holds true here, so we may take roots of complex numbers: if ¢ = (p,) is
a complex in polar form, its nth root is

1
o = (,071', —0). (1.74)

However, things get a bit more complicated. Remember, the phase is defined only
up to multiples of 2. Therefore, we must rewrite Equation (1.74) as

e = <(/5, %(e + k27r)> . (1.75)

It appears that there are several roots of the same number. This fact should not
surprise us: in fact, even among real numbers, roots are not always unique. Take,
for instance, the number 2 and notice that there are two square roots, /2 and —/2.

How many nth roots are there? There are precisely n nth roots for a complex
number. Why? Let us go back to Equation (1.75).

1 1k
~(6 4+ 2kn) = —6 + —2x. (1.76)
n n n

How many different solutions can we generate by varying k? Here they are:

k=0 0

k=1

+ |31~

S|
S
=
)

=l

(1.77)

1 n—1
k=n—-1 70+~ 5"2n

That is all: when k = n, we obtain the first solution; when k = n + 1, we obtain
the second solution; and so forth. (Verify this statement!)

23

24 Complex Numbers

Figure 1.10. The three cube roots of
unity.

To see what is happening, let us assume that p = 1; in other words, let us find
nth roots of a complex number ¢ = (1, 0) on the unit circle. The n solutions in Equa-
tion (1.77) can be interpreted in the following way: Draw the unit circle, and the
vectors whose phase is }10, %9 plus an angle equal to % of the entire circle, where
k=1,...,n. We get precisely the vertices of a regular polygon with n edges. Fig-
ure 1.10 is an example when n = 3.

Exercise 1.3.9 Find all the cube rootsof c =1 +1i. |

By now we should feel pretty comfortable with the polar representation: we
know that any complex number, via the polar-to-Cartesian function, can be writ-
ten as

¢ = p(cos(8) + i sin(9)). (1.78)

Let us introduce yet another notation that will prove to be very handy in many
situations. The starting point is the following formula, known as Euler’s formula:

e’ = cos(0) +i sin(d). (1.79)

The full justification of the remarkable formula of Euler lies outside the scope of
this book.® However, we can at least provide some evidence that substantiates its

% For the calculus-savvy reader: Use the well-known Taylor expansions.

2 X"

Cmldxd (1.80)
2 n!

. x3 (_1)n 2n+1

51n(x)=x7§+-~+(2n+1)!x +oee (1.81)
x? D" o

cos(x):1—7+~~-+(2n)lx +- (1.82)

Assume that they hold for complex values of x. Now, formally multiply sin(x) by i and add compo-
nentwise cos(x) to obtain Euler’s formula.

1.3 The Geometry of Complex Numbers

validity. First of all, if 6 = 0, we get what we expected, namely, 1. Secondly,
¢! O+0) — cos(6) + 6) + i sin(6; + 6,)
= cos(6y) cos(,) — sin(6;) sin(65)
+i((sin(6;) cos(82) + sin(62) cos(61)) (1.83)
= (cos(6y) + i sin(61))((cos(6,) + i sin(6,))
— o 5 oif2

In other words, the exponential function takes sums into products as it does in
the real case.

Exercise 1.3.10 Prove De Moivre’s formula:
(e”)" = cos(nb) + i sin(nb). (1.84)

(Hint: The trigonometric identities used earlier, with induction on #n, will do the
work.) [|

Now that we know how to take the exponential of an imaginary number, there
is no problem in defining the exponential of an arbitrary complex number:

"t — ¢ x P = ¢(cos(b) + i sin(b)). (1.85)
Euler’s formula enables us to rewrite Equation (1.78) in a more compact form:
c=pe?. (1.86)

We shall refer to Equation (1.86) as the exponential form of a complex number.
Exercise 1.3.11 Write the number ¢ = 3 — 4i in exponential form. [|

The exponential notation simplifies matters when we perform multiplication:
c1cr = p1 e py e = ppy M) (1.87)
Exercise 1.3.12 Rewrite the law for dividing complex numbers in exponential
form.
]

With this notation, we can look at the roots of the complex number 1 = (1, 0) =
1+ 0i. Let n be a fixed number. There are n different roots of unity. Setting ¢ =
(1, 0) in Equation (1.75), we get

cr = (1,0) = (ﬁ }1(0+2kn)= <1, 2’%)) (1.88)

By permitting k =0,1,2,...,n — 1, we get n different roots of unity. Notice that if
we set k = n, we get back to the first one. The kth root of unity in exponential form
is e27/" We denote these n different roots of unity by

wg =1, wi, > i (1.89)

o e e Wy

25

26 Complex Numbers

>)

Figure 1.11. The seventh root of unity and its
powers.

Geometrically these n roots of unity correspond to splitting up the unit circle into n
parts where the first partition is (1, 0). Figure 1.11 is a picture of the seventh root of
unity and all its powers.

If we multiply two roots of unity, we get

jok _ J2mij/n 2nik/n _ 2ri(j+k)/n _ j+k
wlw, =e e e = w) ™. (1.90)

Notice also that

ol =" =1, (1.91)
and hence

s (1.92)
Exercise 1.3.13 Draw all the fifth roots of unity. |

We are now in a position to characterize geometrically any function on complex
numbers. The simplest functions one can think of beyond the elementary operations
are polynomials. An arbitrary polynomial with complex coefficients looks like

P(x) = c,x" 4 ¢, 1x" -+ o, (1.93)
where ¢, c1, ..., c,—1 are in C. P(x) can be seen as a function from C to C
P(x):C— C. (1.94)

To build some geometric intuition on polynomials, you can try your hand at the
following two exercises.

Exercise 1.3.14 Describe the geometric meaning of the function
cr—c" (1.95)
from C to C. |

1.3 The Geometry of Complex Numbers

Exercise 1.3.15 Describe the geometric meaning of the function
cr—>c+co (1.96)
from C to C. |

After polynomials, the next set of functions are rational functions, or quotients
of polynomials:

_ Py(x) . cnx" + cn,lx"_1 4+ -4co
COP(X) dpx" 4 dp X" dy
In general, describing the action on the plane provided by a rational function is no

simple matter. The simplest case, though, is relatively easy and a very important
one:

R(x)

(1.97)

ax +b

Ripca(x) = ard

(1.98)

where a, b, ¢, d are in C and ad — bc # 0 is known as the Mobius transformation.
The following set of exercises introduce some of the basic properties of Mobius
transformations. (In particular, we show that the set of Mobius transformations form
a group.)’

Exercise 1.3.16 Whena =d =0andb =c =1, we get R(x) =)1? Describe the ge-
ometrical effect of this transformation. (Hint: See what happens to the points inside
and outside the circle of radius 1.) [|

Exercise 1.3.17 Prove that the composition of two M&bius transformations is a
Mobius transformation. In other words, if R,p.qs and Ry p 4 are two Mobius
transformations, the transformation R, p o 4 © Ry pc.a glven by

Ripca © Rupea(x) = Rop.c.a(Rapealx)) (1.99)

is also a Mobius transformation. [|

Exercise 1.3.18 Show that the identity transformation, i.e., the transformation that
leaves every point fixed, is a M6bius transformation. |

Exercise 1.3.19 Show that each Mobius transformation has an inverse that is also
a Mobius transformation, i.e., for each R, p .4 you can find R, ~ 4 such that

Rar,br,cr,dr o Ra,h.c.d(x) = X. (1.100)
|
There are many more functions in the complex domain, but to introduce them

one needs tools from complex analysis, i.e., calculus over the complex numbers. The
main idea is quite simple: replace polynomials with a power series, i.e., polynomials

7 Mobius transformations are a truly fascinating topic, and perhaps the best entrance door to the geom-
etry of complex numbers. We invite you to find out more about them in Schwerdtfeger (1980).

27

28 Complex Numbers

with an infinite number of terms. The functions one studies are the so-called analytic
functions, which are functions that can be coherently pieced together from small
parts, each of which is represented by a series.

Programming Drill 1.3.3 Expand your program. Add functions for multiplication,
division, and returning the polar coordinates of a number.

We have covered the basic language of complex numbers. Before we embark on
our quantum journey, we need another tool: vector spaces over the complex field.
References: Most of the material found in this chapter can be found in any calcu-
lus or linear algebra textbook. References for some of the more advanced material
presented at the end of the chapter can be found in, e.g., Bak and Newman (1996),
Needham (1999), Schwerdtfeger (1980), and Silverman (1984).

The history of complex numbers goes back to the mid-sixteenth century during
the Italian Renaissance. The story of Tartaglia, Cardano, Bombelli and their effort
to solve algebraic equations is well worth reading. Some of this fascinating tale is in
Nahin (1998), Mazur (2002), and several wonderful sections in Penrose (1994).

2

Complex Vector Spaces

Philosophy is written in that great book which continually
lies open before us (I mean the Universe). But one cannot
understand this book until one has learned to understand
the language and to know the letters in which it is written. It
is written in the language of mathematics, and the letters are
triangles, circles and other geometric figures. Without these
means it is impossible for mankind to understand a single
word; without these means there is only vain stumbling in a
dark labyrinth.'

Galileo Galilei

Quantum theory is cast in the language of complex vector spaces. These are mathe-
matical structures that are based on complex numbers. We learned all that we need
about such numbers in Chapter 1. Armed with this knowledge, we can now tackle
complex vector spaces themselves.

Section 2.1 goes through the main example of a (finite-dimensional) complex
vector space at tutorial pace. Section 2.2 provides formal definitions, basic prop-
erties, and more examples. Each of Section 2.3 through Section 2.7 discusses an
advanced topic.

Reader Tip. The reader might find some of this chapter to be “just boring math.”
If you are eager to leap into the quantum world, we suggest reading the first two or
three sections before moving on to Chapter 3. Return to Chapter 2 as a reference
when needed (using the index and the table of contents to find specific topics). Q

... La filosofia é scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli occhi
(io dico l'universo), ma non si puo intendere se prima non s’impara a intender la lingua, e conoscer i
caratteri, ne’ quali é scritto. Egli é scritto in lingua matematica, e i caratteri sono triangoli, cerchi, ed altre
figure geometriche, senza i quali mezi e impossibile a intenderne umanamente parola; senza questi e un
aggirarsi vanamente per un’oscuro laberinto... (Opere Il Saggiatore p. 171).

29

30

Complex Vector Spaces

A small disclaimer is in order. The theory of complex vector spaces is a vast and
beautiful subject. Lengthy textbooks have been written on this important area of
mathematics. It is impossible to provide anything more than a small glimpse into
the beauty and profundity of this topic in one chapter. Rather than “teaching” our
reader complex vector spaces, we aim to cover the bare minimum of concepts, termi-
nology, and notation needed in order to start quantum computing. It is our sincere
hope that reading this chapter will inspire further investigation into this remarkable
subject.

2.1 C" AS THE PRIMARY EXAMPLE

The primary example of a complex vector space is the set of vectors (one-
dimensional arrays) of a fixed length with complex entries. These vectors will de-
scribe the states of quantum systems and quantum computers. In order to fix our
ideas and to see clearly what type of structure this set has, let us carefully exam-
ine one concrete example: the set of vectors of length 4. We shall denote this set as
C* = C x C x C x C, which reminds us that each vector is an ordered list of four
complex numbers.
A typical element of C* looks like this:

6 —4i

743
2.1)
42— 8.1i

—3i

We might call this vector V. We denote the jth element of V as V[j]. The top row
is row number 0 (not 1):;> hence, V[1] =7 + 3i.

What types of operations can we carry out with such vectors? One operation
that seems obvious is to form the addition of two vectors. For example, given two
vectors of C*

6 —4i 16 +2.3i

74 3i —7i
V= and W= , (2.2)
42 —8.1i 6
—3i —4i

2 Computer scientists generally start indexing their rows and columns at 0. In contrast, mathematicians
and physicists tend to start indexing at 1. The difference is irrelevant. We shall generally follow the
computer science convention (after all, this is a computer science text).

2.1 C" as the Primary Example

we can add them to form V + W € C* by adding their respective entries:

6 —4i
7+ 3i
42 —8.1i

—3i

16 +2.3i
=7i
6

—4i

Formally, this operation amounts to

V+W)ljl=VIjl+ WLl

Exercise 2.1.1

[54130
6+ 2i
0.53 — 6i

12

7-8i
4i

[(6—4i)+ (16 +2.30) |

(7 + 3i) + (=7i)

(4.2 —8.1i) + (6)
(=30) + (—40)

Add the following two vectors:

22 -1.7i
7T—4i
10.2 — 8.1i

—7i

(2.3)

(2.4)

2.5)

The addition operation satisfies certain properties. For example, because the
addition of complex numbers is commutative, addition of complex vectors is also

commutative:

V4+W=

[(6— 4i) + (16 + 2.30)
(7 +30) + (~7i)
(4.2 — 8.1i) + (6)
(=3i) + (—4i)

(16 +2.3i) + (6 — 4i) |
(=7i) + (7 + 3i)
(6) + (4.2 — 8.1i)
(—di) + (=3i)

22— 17
7—4i
10.2 — 8.1i
~7i

=W+ V.

(2.6)

Similarly, addition of complex vectors is also associative, i.e., given three vectors
V, W, and X, we may add them as (V + W) + X or as V + (W + X). Associativity

states that the resulting sums are the same:

V+W)+ X=V+(W+ X).

Exercise 2.1.2 Formally prove the associativity property.

2.7)

31

32 Complex Vector Spaces

There is also a distinguished vector called zero:

0
0
0= ’ (2.8)
0
0
which satisfies the following property: for all vectors V € C*, we have
V4+0=V=0+V. (2.9)
Formally, 0 is defined as 0[j] = 0.
Every vector also has an (additive) inverse (or negative). Consider
6—4i
7+ 3i
V= (2.10)
42 —8.1i
—3i
There exists in C* another vector
—644i
-7 —3i
-V = ect (2.11)
—42+8.1i
3i
such that
6—4i —6+4i 0
7+ 3i -7 -3i 0
42 —8.1i —4.2+8.1i 0
—3i 3i 0

In general, for every vector W e C*, there exists a vector —W e C* such that

W+ (=W) = (=W) + W = 0. —W is called the inverse of W. Formally,

(=W)lj] = =(WLiD-

The set C* with the addition, inverse operations, and zero such that the addition
is associative and commutative, form something called an Abelian group.

(2.13)

2.1 C" as the Primary Example

What other structure does our set C* have? Take an arbitrary complex number,
say, ¢ = 3 + 2i. Call this number a scalar. Take a vector

6+3i

0+ 0i
V= . (2.14)
541

4

We can multiply an element by a scalar by multiplying the scalar with each entry of
the vector;i.e.,

6+ 3i 12 421
0+ 0i 0+ 0i
(3 +2i) - - : (2.15)
5+ 1i 13+ 13i
4 1248

Formally, for a complex number ¢ and a vector V, we form ¢ - V, which is defined as
(c- V)i =ex V[jl, (2.16)

where the x is complex multiplication. We shall omit the - when the scalar multipli-
cation is understood.

16 +2.3i
Exercise 2.1.3 Scalar multiply 8 — 2i with _67 Lo [|
5—4i

Scalar multiplication satisfies the following properties: for all c, ¢1, c; € C and
forall V, W e C*,

m1l1-V=V,

Bc (- V)=(c1xc)-V,
mc(V+W)y=c-V+4+c-W,
[| (61+Cz)-V=C1'V+62'V.

Exercise 2.1.4 Formally prove that (¢c; +¢)-V=c1-V+c- V. []

An Abelian group with a scalar multiplication that satisfies these properties is
called a complex vector space.

Notice that we have been working with vectors of size 4. However, everything
that we have stated about vectors of size 4 is also true for vectors of arbitrary size.
So the set C" for a fixed but arbitrary » also has the structure of a complex vector
space. In fact, these vector spaces will be the primary examples we will be working
with for the rest of the book.

33

34

Complex Vector Spaces

Programming Drill 2.1.1 Write three functions that perform the addition, inverse,
and scalar multiplication operations for C", i.e., write a function that accepts the ap-
propriate input for each of the operations and outputs the vector.

2.2 DEFINITIONS, PROPERTIES, AND EXAMPLES

There are many other examples of complex vector spaces. We shall need to broaden
our horizon and present a formal definition of a complex vector space.

Definition 2.2.1 A complex vector space is a nonempty set V, whose elements we
shall call vectors, with three operations

B Addition: +:VxV — V
B Negation: —:V — V
m Scalar multiplication: - : C x V — V

and a distinguished element called the zero vector 0 € V in the set. These opera-
tions and zero must satisfy the following properties: for all V, W, X eV and for
allc,c1,c; € C,

(i) Commutativity of addition: V+ W =W+ V,

(ii) Associativity of addition: (V + W)+ X =V + (W + X),
(iii) Zero is an additive identity: V+0=V =04V,
(iv) Every vector has an inverse: V + (=V)=0=(=V)+V,
(v) Scalar multiplication has a unit: 1 -V =V,
(vi) Scalar multiplication respects complex multiplication:

ci1- (- V)=(c1 x)-V, (2.17)
(vii) Scalar multiplication distributes over addition:

c-(V+W)y=c-V+c-W, (2.18)
(viii) Scalar multiplication distributes over complex addition:

(ci+c) V=c-V+c-V. (2.19)

Torecap, any set that has an addition operation, an inverse operation, and a zero
element that satisfies Properties (i), (ii), (iii), and (iv) is called an Abelian group. If,
furthermore, there is a scalar multiplication operation that satisfies all the proper-
ties, then the set with the operations is called a complex vector space.

Although our main concern is complex vector spaces, we can gain much intuition
from real vector spaces.

Definition 2.2.2 A real vector space is a nonempty set V (whose elements we shall
call vectors), along with an addition operation and a negation operation. Most impor-
tant, there is a scalar multiplication that uses R and not C, i.e.,

G RxV— V. (2.20)

This set and these operations must satisfy the analogous properties of a complex vector
space.

2.2 Definitions, Properties, and Examples

In plain words, a real vector space is like a complex vector space except that we
only require the scalar multiplication to be defined for scalars in R C C. From the
fact that R C C, it is easy to see that for every V we have R x V € C x V. If we have
a given

i CxV—YV, (2.21)
then we can write
RxVe—sCxV-—V. (2.22)

We conclude that every complex vector space can automatically be given a real
vector space structure.
Let us descend from the abstract highlands and look at some concrete examples.

Example 2.2.1 C”, the set of vectors of length n with complex entries, is a com-
plex vector space that serves as our primary example for the rest of the book. In
Section 2.1, we exhibited the operations and described the properties that are sati-
sfied. 0

Example 2.2.2 C", the set of vectors of length n with complex entries, is also a real
vector space because every complex vector space is also a real vector space. The
operations are the same as those in Example 2.2.1. O

Example 2.2.3 R”, the set of vectors of length n with real number entries, is a real
vector space. Notice that there is no obvious way to make this into a complex vec-
tor space. What would the scalar multiplication of a complex number with a real
vector be? 0

In Chapter 1, we discussed the geometry of C = C!'. We showed how every com-
plex number can be thought of as a point in a two-dimensional plane. Things get
more complicated for C2. Every element of C? involves two complex numbers or
four real numbers. One could visualize this as an element of four-dimensional space.
However, the human brain is not equipped to visualize four-dimensional space. The
most we can deal with is three dimensions. Many times throughout this text, we
shall discuss C" and then revert to R? in order to develop an intuition for what is
going on.

It pays to pause for a moment to take an in-depth look at the geometry of R>.
Every vector of R? can be thought of as a point in three-dimensional space or equiv-

5
alently, as an arrow from the origin of R to that point. So the vector | —7 | shown
63

in Figure 2.1 is 5 units in the x direction, —7 units in the y direction, and 6.3 units in
the z direction.
”
o 0
Given two vectors V = |:r1:| and V' = | ; | of R?, we may add them to form

rn ’
)

ro +rg
|:r1 +r?:|. Addition can be seen as making a parallelogram in R? where you attach
ry 475

the beginning of one arrow to the end of the other one. The result of the addition is

35

36 Complex Vector Spaces

=
x
— N
v
=2

Figure 2.1. A vector in three
dimensional space.

the composition of the arrows (see Figure 2.2). The reason that we can be ambiguous
about which arrow comes first demonstrates the commutativity property of addition.

ro —ro
Given a vector V = |:r1 :| in R3, we form the inverse —V = | -, | by looking at
rn —r

the arrow in the opposite direction with respect to all dimensions (as in Figure 2.3).

.
And finally, the scalar multiplication of a real number r and a vector V = r(lj

rry

r
isr-V= |:::?:|, which is simply the vector V stretched or shrunk by r (as in Fig-

ure 2.4).

It is useful to look at some of the properties of a vector space from the geometric
point of view. For example, consider the property r - (V+ W) =r -V +r - W. This
corresponds to Figure 2.5.

2
Exercise 2.2.1 Letr;=2,np =3,and V = |:—4]. Verify Property (vi), i.e., calcu-
1

late 7y - (r2- V) and (r; x r2) - V and show that they coincide.

Exercise 2.2.2 Draw pictures in R? that explain Properties (vi) and (viii) of the
definition of a real vector space. |

Let us continue our list of examples.

Example 2.2.4 C™" the set of all m-by-n matrices (two-dimensional arrays) with
complex entries, is a complex vector space. O

Figure 2.2. Vector addition.

2.2 Definitions, Properties, and Examples

Figure 2.3. Inverse of a vector.

-

For a given A € C"™*", we denote the complex entry in the jth row and the kth
column as A[j, k] or c¢; x . We shall denote the jth row as A[j, —] and the kth col-
umn as A[—, k]. Several times throughout the text we shall show the row and column
numbers explicitly to the left and top of the square brackets:

0 1 cee n—-1
0 €0,0 1 v Cop-t
1 c10 i1 ot Clp-t
A=) .)) . (2.23)
m—=1|cu10 Cm-11 *°* Cm—ln-1

The operations for C"*" are given as follows: Addition is

0,0 c1 ccr Cop-1 do,o doqg - don—
1,0 el ot Clp—l N dio di - dipa
_Cmfl,(J Cm-1,1 - Cm—1,n—1 i _dmfl,() dmfl,l e dmfl,nfl i
co,0 + doo co1+doa S co.n—1 + do n-1
c1o+dio ci1+dia e Cln—1 + din (2.24)
| Cm—1.0+dm-10 Cm-11+du-11 - Cm-1n-1 + dn-1n-1 |

Figure 2.4. A real multiple of a
vector.

37

38 Complex Vector Spaces

Figure 2.5. Scalar multiplication distributes over addition.

The inverse operation is given as

€0,0 €o,1

C1,0 C11

Cm—-1,0 Cm-1.1

Co,n—1

C1,n—1

—C0,0

—C1,0

Cm—1,n-1

Scalar multiplication is given as

€0,0 €o,1

€10 CL,1

Cm—-1,0 Cm-1,1

C X Cp,0

C XC1,0

€ X Cm-1,0

Co,n—1

Cl,n—1

L —Cm-1,0

Cm—1,n—1

C X Cp1

C X (11

€ X Cm—1,1

C X Co,n—-1

C X C1,n-1

¢ X Cn—1,n-1 i

—Co,1

—C11

—Cm-1,1

—C0,n—1

—C1,n—1

—Cm—1,n-1

(2.25)

(2.26)

Formally, these operations can be described by the following formulas:

For two matrices, A, B € C™*", we add them as

(A+ B)lj, k]l = Alj, k] + B[], k].

The inverse of A is

(=, k] = —(A[J, k).

(2.27)

(2.28)

2.2 Definitions, Properties, and Examples

The scalar multiplication of A with a complex number ¢ € Cis

(c- A)j. k] =c x A[j, k] (2.29)

Exercise 2.23 Let ¢i =2i, c; =1+4+2i, and A = |:21+_211 4_H:| Verify Properties

(vi) and (viii) in showing C?>*? is a complex vector space. |

Exercise 2.2.4 Show that these operations on C"*" satisfy Properties (v), (vi), and
(viii) of being a complex vector space. [|

Programming Drill 2.2.1 Convert your functions from the last programming drill so
that instead of accepting elements of C", they accept elements of C"™*".

When #n = 1, the matrices C"™"* = C"*!1 = C™, which we dealt with in Sec-
tion 2.1. Thus, we can think of vectors as special types of matrices.

When m = n, the vector space C"" has more operations and more structure
than just a complex vector space. Here are three operations that one can perform
onan A € C™"

m The transpose of A, denoted A7, is defined as
A'[j, k] = A[k, j]. (2.30)

m The conjugate of A, denoted A, is the matrix in which each element is the
complex conjugate of the corresponding element of the original matrix,’ i.e.,
Alj, k] = ALj. &].

m The transpose operation and the conjugate operation are combined to form the
adjoint or dagger operation. The adjoint of A, denoted as A, is defined as Af =
(A)" = (AT) or Al[j.k] = A[k, J].

Exercise 2.2.5 Find the transpose, conjugate, and adjoint of
6-3i 2+4+12i —19i
0 S+2.1i 17 . (2.31)
1 2451 3-—-450
[|

These three operations are defined even when m # n. The transpose and adjoint
are both functions from C"*" to C**™.

These operations satisfy the following properties for all ¢ € C and for all A,
B e Cmm:

(i) Transpose is idempotent: (A7) = A.
(ii) Transpose respects addition: (A + B)T = AT + BT.
(iii) Transpose respects scalar multiplication: (¢ - A)T =c- AT.

3 This notation is overloaded. It is an operation on complex numbers and complex matrices.

39

40

Complex Vector Spaces

(iv) Conjugate is idempotent: A = A.

(v) Conjugate respects addition: A + B= A + B.

(vi) Conjugate respects scalar multiplication: c- A = ¢ - A.
(vii) Adjoint is idempotent: (AT)T = A.
(viii) Adjoint respects addition: (A + B) = A + Bf.

(ix) Adjoint relates to scalar multiplication: (¢ - A)f =¢- A,

Exercise 2.2.6 Prove that conjugation respects scalar multiplication, i.e., c- A =
c- A

Exercise 2.2.7 Prove Properties (vii), (viii), and (ix) using Properties (i) — (vi). W

The transpose shall be used often in the text to save space. Rather than writing

€o

“ (2.32)

Cn—1

which requires more space, we write [co, 1, - - - , ¢u_1]7.
When m = n, there is another binary operation that is used: matrix multiplica-
tion. Consider the following two 3-by-3 matrices:

3428 0 5-6i 5 2—i 6-4i
A=| 1 442 i |, B=| 0 4+s5 2 |. (233)
4—i 0 4 T—4i 247 0

We form the matrix product of A and B, denoted A x B. A » B will also be a 3-by-3
matrix. (A = B)[0, 0] will be found by multiplying each element of the Oth row of A
with the corresponding element of the Oth column of B. We then sum the results:

(A* B)[0,0] = ((3+2i) x 5) + (0 x 0) + (5 — 6i) x (7 — 4i))
= (15+10i) + (0) + (11 — 62i) = 26 — 52i. (2.34)

The (A % B)[], k] entry can be found by multiplying each element of A[j, —] with
the appropriate element of B[—, k] and summing the results. So,

26—52i 60424 26
(AxB)=| 947i 1429 14 : (2.35)
48 —21i 15422 20—22i

Exercise 2.2.8 Find B x A. Does it equal A x B? |

Matrix multiplication is defined in a more general setting. The matrices do not
have to be square. Rather, the number of columns in the first matrix must be the

2.2 Definitions, Properties, and Examples

same as the number of rows in the second one. Matrix multiplication is a binary
operation

X s CIN s CUXP s O, (2.36)

Formally, given A in C"*" and B in C"*?, we construct A » B in C"*? as

n—1

(A B)[j. k] =D (Alj. h] x B[h, k]). (2.37)
h=0

When the multiplication is understood, we shall omit the .
For every n, there is a special n-by-n matrix called the identity matrix,

1 0 0]
01 - 0

L=| . (2.38)
00 1

that plays the role of a unit of matrix multiplication. When # is understood, we shall
omit it.

Matrix multiplication satisfies the following properties: For all A, B, and C in
(Cnxn’

(i) Matrix multiplication is associative: (A x B)x C = A x (B * C).
(i1) Matrix multiplication has I, as aunit: I, x A = A = A« I,,.
(iii) Matrix multiplication distributes over addition:

Ax(B+C)=(AxB)+(AxC), (2.39)

(B+C)x A= (BxA)+(Cx A). (2.40)
(iv) Matrix multiplication respects scalar multiplication:

c-(AxB)=(c- A)x B= Ax(c- B). (2.41)

(v) Matrix multiplication relates to the transpose:

(AxB)T =BT« AT, (2.42)
(vi) Matrix multiplication respects the conjugate:

A+B=A+B (2.43)
(vii) Matrix multiplication relates to the adjoint:

(A= B)l = B » AT, (2.44)

Notice that commutativity is not a basic property of matrix multiplication. This
fact will be very important in quantum mechanics.

Exercise 2.2.9 Prove Property (v) in the above list. [|

41

42 Complex Vector Spaces

Exercise 2.2.10 Use A and B from Equation (2.33) and show that (A x B)! = Bf
*x Al |

Exercise 2.2.11 Prove Property (vii) from Properties (v) and (vi). |

Definition 2.2.3 A complex vector space V with a multiplication = that satisfies the
first four properties is called a complex algebra.

Programming Drill 2.2.2 Write a function that accepts two complex matrices of the
appropriate size. The function should do matrix multiplication and return the result.

Let A be any element in C"*”. Then for any element B € C", we have that A « B
is in C". In other words, multiplication by A gives one a function from C" to C".
From Equations (2.39) and (2.41), we see that this function preserves addition and
scalar multiplication. We will write this map as A : C" — C".

Let us look ahead for a moment and see what relevance this abstract mathe-
matics has for quantum computing. Just as C” has a major role, the complex al-
gebra C™*" shall also be in our cast of characters. The elements of C” are the
ways of describing the states of a quantum system. Some suitable elements of
C™" will correspond to the changes that occur to the states of a quantum sys-
tem. Given a state X € C" and a matrix A € C"*", we shall form another state of
the system A X which is an element of C".* Formally, in this case is a function
* 1 O x C" — C". We say that the algebra of matrices “acts” on the vectors to
yield new vectors. We shall see this action again and again in the following chapters.

Programming Drill 2.2.3 Write a function that accepts a vector and a matrix and
outputs the vector resulting from the “action.”

We return to our list of examples.

Example 2.2.5 C"*", the set of all m-by-n matrices (two-dimensional arrays) with
complex entries, is a real vector space. (Remember: Every complex vector space is
also a real vector space.) O

Example 2.2.6 R"™*" the set of all m-by-n matrices (two-dimensional arrays) with
real entries, is a real vector space. |

Definition 2.2.4 Given two complex vector spaces V and V', we say that V is a com-
plex subspace of V' if V is a subset of V' and the operations of V are restrictions of
operations of V'.

Equivalently, V is a complex subspace of V' if V is a subset of the set V' and

(i) Vis closed under addition: For all Vj and V,inV, V] + V, € V.
(ii) Vis closed under scalar multiplication: Forallc e Cand V € V,c¢-V € V.

4 This might seem reminiscent of computer graphics. In fact, there is a vague relationship that we shall
see when we discuss the Bloch sphere (in Chapter 5) and unitary matrices.

2.2 Definitions, Properties, and Examples

It turns out that being closed under addition and multiplication implies that V is also
closed under inverse and that 0 € V.

Example 2.2.7 Consider the set of all vectors of C’ with the second, fifth, and
eighth position elements being 0:

[co, €1, 0, ¢3, ¢4, 0, c6, ¢7, 0]7. (2.45)

It is not hard to see that this is a complex subspace of C°. We shall see in a few
moments that this subspace is the “same” as C°. O

Example 2.2.8 Consider the set Poly, of polynomials of degree n or less in one
variable with coefficients in C.

P(x) = co+c1x +cax? + -+ cux". (2.46)
Poly, forms a complex vector space. d
For completeness, let us go through the operations. Addition is given as
P(x) 4+ O(x) = (co + c1x + c2x> + - - + cux™) + (do + dix + dox* + - - + dpx™)
= (co+do)+ (c1 +d)x + (cr+d)x> + -+ (co + d)x". (2.47)
Negation is given as
—P(x) = —co— c1x —cox? — - — X" (2.48)
Scalar multiplication by ¢ € C is given as
c-P(x):cxc0+cxc1x+cxczx2+~-~+cxc,,x”. (2.49)

Exercise 2.2.12 Show that Poly, with these operations satisfies the properties of
being a complex vector space. |

Exercise 2.2.13 Show that Poly; is a complex subspace of Poly. |

Example 2.2.9 Polynomials in one variable of degree n or less with coefficients in
C also form a real vector space. O

Example 2.2.10 Polynomials in one variable of degree n or less with coefficients
inR

P(x)=ro+rx+rx>+- - +rx" (2.50)
form a real vector space. d

Definition 2.2.5 LetV and V' be two complex vector spaces. A linear map from V to
V' is a function f:V — V' such that forall V, Vi, V, € V, and c € C,

(i) f respects the addition: f(Vi +V5) = f(V) + f(V2),
(ii) f respects the scalar multiplication: f(c-V) =c- f(V).

43

44

Complex Vector Spaces

Almost all the maps that we shall deal with in this text are linear maps. We have
already seen that when a matrix acts on a vector space, it is a linear map. We shall
call any linear map from a complex vector space to itself an operator. If F : C" —
C" is an operator on C" and A is an n-by-n matrix such that for all V' we have
F(V) = AxV, then we say that F is represented by A. Several different matrices
might represent the same operator.

Computer scientists usually store a polynomial as the array of its coefficients,
i.e., a polynomial with n + 1 complex coefficients is stored as an n + 1 vector. So it
is not surprising that Poly, is the “same” as C"*!. We will now formulate what it
means for two vector spaces to be the “same.”

Definition 2.2.6 Two complex vector spaces V and V' are isomorphic if there is
a one-to-one onto linear map f:V — V'. Such a map is called an isomorphism.
When two vector spaces are isomorphic, it means that the names of the elements of
the vector spaces are renamed but the structure of the two vector spaces are the same.
Two such vector spaces are “essentially the same” or “the same up to isomorphism.”

Exercise 2.2.14 Show that all real matrices of the form

(2.51)
v x

comprise a real subspace of R?*2. Then show that this subspace is isomorphic to C
via the map f : C — R?*? that is defined as

fe+in=|" | 2.52)

_y X
|

Example 2.2.11 Consider the set Func(N, C) of functions from the natural num-
bers N to the complex numbers C. Given two functions f : N — Candg: N — C,
we may add them to form

(f +8)n) = f(n) +g(n). (2.53)
The additive inverse of f is
(= Hn) = =(f(n)). (2.54)

The scalar multiple of ¢ € C and f is the function

(c-)n) =cx f(n). (2.55)

Because the operations are determined by their values at each of their “points” in
the input, the constructed functions are said to be constructed pointwise. O

2.3 Basis and Dimension

Exercise 2.2.15 Show that Func(N, C) with these operations forms a complex vec-
tor space. |

Example 2.2.12 We can generalize Func(N, C) to other sets of functions. For
any a < b in R, the set of functions from the interval [a,b] CR to C denoted
Func([a, b], C) is a complex vector space. O

Exercise 2.2.16 Show that Func(N,R) and Func([a, b], R) are real vector spaces.
[]

Example 2.2.13 There are several ways of constructing new vector spaces from
existing ones. Here we see one method and Section 2.7 describes another. Let
(V,+,—,0,.) and (V', 4+, -, 0/, ") be two complex vector spaces. We construct a
new complex vector space (V x V', +”, =", 0", .") called the Cartesian product’ or
the direct sum of V and V'. The vectors are ordered pairs of vectors (V, V') € V x V'.
Operations are performed pointwise:

V.V +" (2, V) = (Vi + V. Vi+' V), (2.56)

="V, V)= (V. =V, (2.57)

0" = (0,0, (2.58)
c"(V,VYy=(c-V,c' V). (2.59)

O

Exercise 2.2.17 Show that C™ x C" is isomorphic to C"*", |

Exercise 2.2.18 Show that C" and C" are each a complex subspace of C”* x C". R

2.3 BASIS AND DIMENSION

A basis of a vector space is a set of vectors of that vector space that is special
in the sense that all other vectors can be uniquely written in terms of these basis
vectors.

Definition 2.3.1 Let 'V be a complex (real) vector space. V €V is a linear combina-

tion of the vectors Vo, Vi, ..., V,—1 in V if V can be written as
V=c-Wo+c-Vi+--+cp1-Vau (2.60)
for some cy, cy, ..., cy—1in C (R).

Let us return to R? for examples.

3> A note to the meticulous reader: Although we used x for the product of two complex numbers, here
we use it for the Cartesian product of sets and the Cartesian product of vector spaces. We feel it is
better to overload known symbols than to introduce a plethora of new ones.

45

46

Complex Vector Spaces

Example 2.3.1 As

5 0 —6 3 453
3] 2 [+5|1|—4] 1 [+21|1|=]|-29]. (2.61)
3 4 0 1 31.1
we say that
[45.3,—2.9,31.1]" (2.62)

is a linear combination of

5 0 -6 3
214,11, 1], and |1]. (2.63)
3 4 0 1

O

Definition 2.3.2 A set {Vy, Vi, ..., V,_1} of vectors in V is called linearly indepen-
dent if

O=co-Vo+c-Vi+-+cu1- Vit (2.64)

implies that co = ¢; = - -+ = ¢,—1 = 0. This means that the only way that a linear com-
bination of the vectors can be the zero vector is if all the c; are zero.

It can be shown that this definition is equivalent to saying that for any nonzero
V €V, there are unique coefficients ¢y, c, . . ., ¢,—1 in C such that

V=co- W+t -Vi+---+cu1: Vo1 (2.65)

The set of vectors are called linearly independent because each of the vectors in
the set {Vp, V1, ..., V,_1} cannot be written as a combination of the others in the set.

Example 2.3.2 The set of vectors

1 0 0
1l.[1].]0 (2.66)
1 1 1

is linearly independent because the only way that

0 1 0 0
0=|o|l=x|1|+y|1]+zl0 (2.67)
0 1 1 1

can occur is if 0 =x, 0 =x+ y, and 0 = x + y + z. By substitution, we see that
x=y=z=0. O

2.3 Basis and Dimension

Example 2.3.3 The set of vectors

1 0 2
1 ’ 1) —1 (2‘68)
1 1 -1

0 1 0 2
0=|0|=x|1|+y|1]|+z]| -1 (2.69)

0 1 1 -1
can happen when x =2, y = -3, and z = —1. O

Exercise 2.3.1 Show that the set of vectors

1 3 1
3 2 —4
is not linearly independent. |

Definition 2.3.3 A set B={Vy, Vi,..., Vi_1} C V of vectors is called a basis of a
(complex) vector space V if both

(i) every, V €V can be written as a linear combination of vectors from B and
(ii) B is linearly independent.

Example 2.3.4 R3 has a basis

1 0 0
1{.]1f.]of¢- (2.71)
1 1 1

Exercise 2.3.2 Verify that the preceding three vectors are in fact a basis of R>. W

There may be many sets that each form a basis of a particular vector space but
there is also a basis that is easier to work with called the canonical basis or the
standard basis. Many of the examples that we will deal with have canonical basis.
Let us look at some examples of canonical basis.

47

48 Complex Vector Spaces

m R
1 0 0
ol.[1].[o]}- 2.72)
0 0 1

m C" (and R"):

1 0 0 0
0 1 0
E=| |. E=| |....E=|"|.....E=| |. (@73)
. . 1 .
| 0] | 0 | 0] | 1]
Every vector [co, ¢1, ..., ¢,—1]7 can be written as
n—1
j=0

m C"™: The canonical basis for this vector space consists of matrices of the form

01 k n—1
0 [0 0 - 0 0
1 00 -« 0 -~ 0

Eix = j 0 0 1 0o | (2.75)
m-1|0 0 0 0

where £ has alinrow j, column k, and 0’s everywhere else. There is an E;
forj=0,1,...,m—1land k =0,1,...,n — 1. Itis not hard to see that for every
m-by-n matrix, A can be written as the sum:

m—1 n—1

A= A[j, k) - Ejx. (2.76)
j=0 k=0

.

B Poly,: The canonical basis is formed by the following set of monomials:

1,x, 22, ..., x" (2.77)

2.3 Basis and Dimension

B Func(N, C): The canonical basis is composed of a countably infinite® number of
functions f; (j =0,1,2,...), where f; is defined as

1, ifj=n,
fi(n) = (2.78)

0, otherwise.

The definition previously given of a finite linear combination can easily be gen-
eralized to an infinite linear combination. It is not hard to see that any function
f € Func(N, C) can be written as the infinite sum

oo

f=> ¢ f (2.79)

j=0

where ¢; = f(j). Itis also not hard to see that these functions are linearly inde-
pendent. Hence they form a basis for Func(N, C).

m (For the calculus-savvy reader.) Func([a,b], C): The canonical basis is com-
posed of an uncountably infinite number of functions f, forr € [a, b] € R, which
is defined as

1, ifr =x,
fr(x) = (2.80)

0, otherwise.

These functions are linearly independent. Analogous to the last countable dis-
crete summation given in Equation (2.79), we may write any function f €
Func([a, b], C) as an integral:

b
f=[et (2.81)
where ¢, = f(r). Hence the f, form a basis for Func([a, b], C).

It is easy to construct a basis for a Cartesian product of two vector spaces. If
B={V,Vi,...,Vin_1}is abasis for Vand B = {Vj, V],..., V/ _,} is a basis for V',
then BUB = {Vo, Vi,.... Vimr, Vi, VI, ..., V) _}isabasis of V x V',

Let us look at R? carefully. There is the canonical basis:

1 0 0
B = ol.111,10 . (2.82)
0 0 1

© If the reader does not know the difference between “countably” and “uncountably” infinite, fear not.
These notions do not play a major role in the tale we are telling. We shall mostly stay within the
finite world. Suffice it to state that an infinite set is countable if the set can be put in a one-to-one
correspondence with the set of natural numbers N. A set is uncountably infinite if it is infinite and
cannot be put into such a correspondence.

49

50 Complex Vector Spaces

There are, however, many other bases of R?, e.g.,

E 0 0

Bi={|1]|.[1].]0]¢- (2.83)
1 1 1
[2 3

By = 0 [.|1].] =2 (2.84)
-1 2 0

It is no coincidence that all these bases have the same number of vectors.

Proposition 2.3.1 For every vector space, every basis has the same number of vec-
tors.

Definition 2.3.4 The dimension of a (complex) vector space is the number of ele-
ments in a basis of the vector space.

This coincides with the usual use of the word “dimension.” Let us run through some
of our examples:

m R, as a real vector space, is of dimension 3.

In general, R” has dimension # as a real vector space.

C" has dimension # as a complex vector space.

C" is of dimension 27 as a real vector space because every complex number is
described by two real numbers.

Poly, is isomorphic to C"*1; it is not hard to see that the dimension of Poly, is
alson + 1.

C™": the dimension is mn as a complex vector space.

Func(N, C) has countably infinite dimension.

Func([a, b], C) has uncountably infinite dimension.

The dimension of V x V' is the dimension of V plus the dimension of V'.

The following proposition will make our lives easier:

Proposition 2.3.2 Any two complex vector spaces that have the same dimension are
isomorphic. In particular, for each n, there is essentially only one complex vector
space that is of dimension n: C".

(It is easy to see why this is true. Let V and V' be any two vector spaces with
the same dimension. Every V' € V can be written in a unique way as a linear com-
bination of basis vectors in V. Taking those unique coefficients and using them as
coefficients for the linear combination of the basis elements of any basis of V' gives
us a nice isomorphism from V to V'.)

Because we will be concentrating on finite-dimensional vector spaces, we only
concern ourselves with C".

2.3 Basis and Dimension

Sometimes we shall use more than one basis for a single vector space.

Example 2.3.5 Consider the basis
1 -2

B= , (2.85)

-3 4

of R?. The vector V = |:717 can be written as

7 1 -2
=3 —2 . (2.86)
~17 -3 4

The coefficients for V with respect to the basis 5 are 3 and —2. We write this as

Vg = [_32] If C is the canonical basis of R2, then

=7 —17 , (2.87)

ie,Ve=V= [_7]7 :

Let us consider another basis of R2:

7| | -5
D= : . (2.88)
9 7

What are the coefficients of V with respect to D? What is Vp? A change of basis
matrix or a transition matrix from basis B to basis D is a matrix Mp. g such that for
any matrix V, we have

VD = MD<—B * VB- (289)

In other words, Mp. 5 is a way of getting the coefficients with respect to one basis
from the coefficients with respect to another basis. For the above bases I3 and D, the
transition matrix is

2 _3
Mp. g = 52 . (2.90)
-3 3
So
2 -3|]3 9
Vp = Mp_gVg = = . (2.91)

-3 3 -2 —14

51

52

Complex Vector Spaces

(Hadamard

.
>

Figure 2.6. The Hadamard matrix as
a transition between two bases.

Checking, we see that

7 —7 -5
-9 — 14 . (2.92)
~17 9 7
O

Given two bases of a finite-dimensional vector space, there are standard algo-
rithms to find a transition matrix from one to the other. (We will not need to know
how to find these matrices.)

In R, the transition matrix from the canonical basis

1 0
, (2.93)
0 1
to this other basis
i L L
V2 V2 (2.94)
1 1
IR I R
is the Hadamard matrix:
111 1 1 1
e L | (2.95)
V2 1 -1 1 L
V2 V2
Exercise 2.3.3 Show that H times itself gives you the identity matrix. |

Because H multiplied by itself gives the identity matrix, we observe that the tran-
sition back to the canonical basis is also the Hadamard matrix. We might envision
these transitions as in Figure 2.6.

It turns out that the Hadamard matrix plays a major role in quantum computing.

In physics, we are often faced with a problem in which it is easier to calculate
something in a noncanonical basis. For example, consider a ball rolling down a ramp
as depicted in Figure 2.7.

The ball will not be moving in the direction of the canonical basis. Rather it
will be rolling downward in the direction of +45°, —45° basis. Suppose we wish to
calculate when this ball will reach the bottom of the ramp or what is the speed of
the ball. To do this, we change the problem from one in the canonical basis to one in
the other basis. In this other basis, the motion is easier to deal with. Once we have

2.4 Inner Products and Hilbert Spaces

Figure 2.7. A ball rolling down a ramp and the two relevant
bases.

completed the calculations, we change our results into the more understandable
canonical basis and produce the desired answer. We might envision this as the flow-
chart shown in Figure 2.8.

Throughout this text, we shall go from one basis to another basis, perform some
calculations, and finally revert to the original basis. The Hadamard matrix will fre-
quently be the means by which we change the basis.

2.4 INNER PRODUCTS AND HILBERT SPACES

We will be interested in complex vector spaces with additional structure. Recall that
a state of a quantum system corresponds to a vector in a complex vector space. A
need will arise to compare different states of the system; hence, there is a need to
compare corresponding vectors or measure one vector against another in a vector
space.

Consider the following operation that we can perform with two vectors in R>:

5 6 6
-7 0 0
(2.96)
— Transition _ > Calculations P Reverse N

i Transition W

Figure 2.8. Problem-solving flowchart.

53

54

Complex Vector Spaces

In general, for any two vectors Vi = [ro, r1,r2]" and V5 = [r), r{, r;]" in R?, we
can form a real number by performing the following operation:

2
Vi,V =VIxVa =) rir. 2.97
1 107
j=0

This is an example of an inner product of two vectors. An inner product in a complex
(real) vector space is a binary operation that accepts two vectors as inputs and out-
puts a complex (real) number. This operation must satisfy certain properties spelled
out in the following:

Definition 2.4.1 Ar inner product (also called a dot product or scalar product) on a
complex vector space V is a function

(—,—):VxV—C (2.98)
that satisfies the following conditions for all V, V1, V5, and V3 in' V and fora c € C:
(i) Nondegenerate:

(V. V) >0, (2.99)

(V,V)y=0ifand only if V=0 (2.100)

(i.e., the only time it “degenerates” is when it is 0).
(ii) Respects addition:

Vi + V2, V3) = (W1, V3) + (12, V3), (2.101)

Vi, V2 + V3) = (Wi, Vo) + (W1, V3). (2.102)
(ili) Respects scalar multiplication:

(c- Vi, Va) = ¢ x (W1, Va), (2.103)

(Vi,c- Vo) =¢c x (W1, Va). (2.104)

(iv) Skew symmetric:

Vi, Va) = (Va, Vi), (2.105)

An inner product on real vector space { ,):V x V — R must satisfy the same
properties. Because any r € R satisfies 7 = r, Properties (iii) and (iv) are simpler for
a real vector space.

Definition 2.4.2 A (complex) inner product space is a (complex) vector space along
with an inner product.

Let us list some examples of inner product spaces.
m R The inner product is given as

Vi, Vo) = V[V. (2.106)

2.4 Inner Products and Hilbert Spaces

m C": The inner product is given as

(Vi, Va) = V] » V5. (2.107)
m R has an inner product given for matrices A, B € R"*" as

(A, B) = Trace(A” x B), (2.108)

where the trace of a square matrix C is given as the sum of the diagonal elements.
That is,

n—1
Trace(C) =Y _ C[i. i]. (2.109)
i=0

m C" has an inner product given for matrices A, B € C"*" as

(A, B) = Trace(A" x B). (2.110)
m Func(N, C):
(f.8) =Y F(Ne))- (2.111)
j=0

B Func([a, b], C):

b—
(f.g) = / FOs()dr. (2112)

Exercise 2.4.1 Let V; =[2,1,3]7, V5 =[6,2,4]7, and V5 = [0, —1,2]". Show that
the inner product in R3 respects the addition, i.e., Equations (2.101) and (2.102). ®

Exercise 2.4.2 Show that the function (,):R" xR" — R given in Equa-
tion (2.106) satisfies all the properties of being an inner product on R”. [|

0

Exercise 2.4.3 Let A = [(1) i], B= |: _oli|’ and C = |:j ;i| Show that the in-

ner product in R?>*? respects addition (Equations (2.101) and (2.102)) with these
matrices. |

Exercise 2.4.4 Show that the function given for pairs of real matrices satisfies the
inner product properties and converts the real vector space R"*” to a real inner
product space. |

Programming Drill 2.4.1 Write a function that accepts two complex vectors of length
n and calculates their inner product.

The inner product of a complex vector with itself is a real number. We can ob-
serve this from the property that for all V;, V5, an inner product must satisfy

(Vi Va) = (Va.). 2.113)

55

56 Complex Vector Spaces

It follows that if V, = V;, then we have

Vi, i) = Vi, Viy; (2.114)

hence it is real.

Definition 2.4.3 For every complex inner product space V, (—, —), we can define a
norm or length which is a function

| [:V—R (2.115)

defined as |V| = /(V, V).

Example 2.4.1 In R?, the norm of vector [3, —6, 2] is

3 3 3
6 |l= < 6l.] -6 > =R+ (62 +2=49=7. (2.116)
2 2 2
]
Exercise 2.4.5 Calculate the norm of [4 + 3i, 6 — 4i, 12 — 7i, 13i]. |

Exercise 2.4.6 Let A = [z :] € R?*2, Calculate the norm |A| = /{A, A). []

In general, the norm of the vector [x, y, z]7 is

(2.117)

This is the Pythagorean formula for the length of a vector. The intuition one
should have is that the norm of a vector in any vector space is the length of the
vector.

From the properties of an inner product space, it follows that a norm has the
following properties for all V, W € Vand ¢ € C:

(i) Norm is nondegenerate: |V| > 0if V # 0 and |0] = 0.
(i) Norm satisfies the triangle inequality: |V + W| < |V| + |W].
(iii) Norm respects scalar multiplication: |c - V| = |c| x | V.

2.4 Inner Products and Hilbert Spaces

Programming Drill 2.4.2 Write a function that calculates the norm of a given complex
vector.

Given a norm, we can proceed and define a distance function.

Definition 2.4.4 For every complex inner product space (V, { ,)), we can define a
distance function

d(,):VxV—R, (2.118)
where
dVi, Vo) = [Vi = Va| =/ (Vi = Vo, i = V). (2.119)
3 2
Exercise 2.4.7 Let Vi=|1| and V5, = | 2 |. Calculate the distance between
these two vectors. 2 B |

The intuition is that d(V;, V3) is the distance from the end of vector V; to the end
of vector V5. From the properties of an inner product space, it is not hard to show
that a distance function has the following properties for all U, V, W € V:

(i) Distance is nondegenerate: d(V, W) > 0if V £ Wand d(V, V) = 0.
(ii) Distance satisfies the triangle inequality: d(U, V) < d(U, W) + d(W, V).
(iii) Distance is symmetric: d(V, W) = d(W, V).

Programming Drill 2.4.3 Write a function that calculates the distance of two given
complex vectors.

Definition 2.4.5 Two vectors Vi and V, in an inner product space V are orthogonal
if (Vi, V2) = 0.

The picture to keep in mind is that two vectors are orthogonal if they are per-
pendicular to each other.

Definition 2.4.6 A basis B = {Vy, Vi, ..., Vy_1} for an inner product space V is called
an orthogonal basis if the vectors are pairwise orthogonal to each other, i.e., j # k im-
plies (V;, Vi) = 0. An orthogonal basis is called an orthonormal basis if every vector
in the basis is of norm 1, i.e.,

1, ifj=k,
(Vi Vi) = 854 = (2.120)

0, ifj#k.

8; k is called the Kronecker delta function.

57

58 Complex Vector Spaces

(i) Orthogonal but
not orthonormal

Figure 2.9. Three bases for R?,

(i) Not orthogonal (iii) Orthonormal

Example 2.4.2 Consider the three bases for R? shown in Figure 2.9.
Formally, these bases are

|1 1
() S
1 0
|1 1
(ii) , ,
1 -1

1
i) | |

O

In R?, the standard inner product (V, V') = VTV’ can be shown to be equivalent
to

(V, V'Y =|V||V'| cos 6, (2.121)
where 0 is the angle between V and V’. When |V’| = 1, this equation reduces to
(V, V'Y =|V|cos 6. (2.122)

Exercise 2.48 Let V =[3,—1,0]” and V' = [2, -2, 1]”. Calculate the angle 6 be-
tween these two vectors. |

Elementary trigonometry teaches us that when |V’| = 1, the number (V, V') is
the length of the projection of V onto the direction of V' (Figure 2.10).

Figure 2.10. The projection of V onto V.

2.4 Inner Products and Hilbert Spaces

(V, V') - V' is the vector V' extended (or reduced) to meet the projection of V
onto V'.

What does this mean in terms of R3? Let V = [ry, 1, 72]7 be any vector in R>.
Let Ey, E;, and E, be the canonical basis of R3. Then

Yo 1 0 0
V=|rn|=E V|0 |+E V|1]|+(EV|0]. (2.123)
rs 0 0 1

In general, for any V' € R”,

n—1

v=Y (E.V)E;. (2.124)

~.
Il
f=}

We shall use the intuition afforded by R* and R” to understand this type of de-
composition of vectors into sums of canonical vectors for other vector spaces.

Proposition 2.4.1 In C", we also have that any V can be written as
V =(Ey, V)Ey + (E1, V)E1 + -+ + (Ep-1, V) By (2.125)

It must be stressed that this is true for any orthonormal basis, not just the canonical
one.

In Func(N, C) for an arbitrary function g : N — C and for a canonical basis
function f; : N — C, we have

(fi8) =) F;(k)gk) =1 x g(j) = 8())- (2.126)
k=0
Andsoany g : N — C can be written as
g=Y ({8 fr)- (2.127)
k=0

Reader Tip. The following definitions will not be essential for us, but we include
them so that the reader will be able to understand other texts. In our text, there is
no reason to worry about them because we are restricting ourselves to finite-dimen-
sional inner product spaces and they automatically satisfy these properties. o

Definition 2.4.7 Within an inner product space V, { ,) (with the derived norm and
a distance function), a sequence of vectors Vy, Vi, Va, ... is called a Cauchy sequence
if for every € > 0, there exists an Ny € N such that

forallm,n> Ny, d(V,,,V,) <e. (2.128)

59

60 Complex Vector Spaces

Figure 2.11. Completeness for a complex inner product space.

Definition 2.4.8 A complex inner product space is called complete if for any Cauchy

sequence of vectors Vy, V1, Va, ..., there exists a vector V € V such that
lim |V, — V| =0. (2.129)
n—oo

The intuition behind this is that a vector space with an inner product is complete
if any sequence accumulating somewhere converges to a point (Figure 2.11).

Definition 2.4.9 A Hilbert space is a complex inner product space that is complete.

If completeness seems like an overly complicated notion, fear not. We do not
have to worry about completeness because of the following proposition (which we
shall not prove).

Proposition 2.4.2 Every inner product on a finite-dimensional complex vector space
is automatically complete; hence, every finite-dimensional complex vector space
with an inner product is automatically a Hilbert space.

Quantum computing in our text will only deal with finite-dimensional vector
spaces and so we do not have to concern ourselves with the notion of completeness.
However, in the culture of quantum mechanics and quantum computing, you will
encounter the words “Hilbert space,” which should no longer cause any anxiety.

2.5 EIGENVALUES AND EIGENVECTORS

Example 2.5.1 Consider the simple 2-by-2 real matrix

4 -1
(2.130)
2 1
Notice that
4 —1 1 3 1
= =3 . (2.131)
2 1 1 3 1

2.5 Eigenvalues and Eigenvectors

(.1’ ;
3[1,1)°

Figure 2.12. A vector before and
after a matrix action.

Multiplying our matrix by this vector is nothing more than multiplying the vector
by a scalar. We can see this in Figure 2.12.

In other words, when the matrix acts on this vector, it does not change the direc-
tion of the vector, but only its length. d

Example 2.5.2 Consider the following matrix and vector:

= =2 . (2.132)

Again, the matrix acting on this vector does not change the vector’s direction, rather
its length as in Figure 2.13. d

This is not always true for every vector, nor is it true for every matrix. However,
when it is true, we assign such scalars and vectors special names.

Definition 2.5.1 For a matrix A in C*", if there is a number c in C and a vector
V #£ 0 with C" such that

AV=c.V, (2.133)

then c is called an eigenvalue of A and V is called an eigenvector of A associated
with c. (“eigen-" is a German prefix that indicates possession.)

(1,21
21, 21"
Figure 2.13. Another
vector before and after
a matrix action.

61

62

Complex Vector Spaces

Exercise 2.5.1 The following vectors

1 1 1
1{.,] 01,1 (2.134)
0 —1 2

are eigenvectors of the matrix

1 -3 3
3 -5 3|. (2.135)
6 —6 4

Find the eigenvalues. |

If a matrix A has eigenvalue ¢y with eigenvector Vp, then for any ¢ € C we have
A(cVo) = cAVy = cco Vo = co(c V), (2.136)

which shows that ¢V} is also an eigenvector of A with eigenvalue cy. If ¢Vj and ¢’V
are two such eigenvectors, then because

A(cVo+ Vo) = AcVo+ A Vo = cAVy + AV,
= c(coVo) + ¢'(coVo) = (¢ +) (coWo) = colc +)W, (2.137)

we see that the addition of two such eigenvectors is also an eigenvector. We con-
clude the following:

Proposition 2.5.1 Every eigenvector determines a complex subvector space of the
vector space. This space is known as the eigenspace associated with the given eigen-
vector.

Some matrices have many eigenvalues and eigenvectors and some matrices have
none.

2.6 HERMITIAN AND UNITARY MATRICES

We shall need certain types of important square matrices and their properties.

A matrix A € R™" is called symmetric if A” = A. In other words, A[j, k] =
Alk, j]. Let us generalize this notion from the real numbers to the complex
numbers.

Definition 2.6.1 An n-by-n matrix A is called hermitian if A" = A. In other words,

Alj, k] = Alk, j].

Definition 2.6.2 If A is a hermitian matrix then the operator that it represents is called
self-adjoint.

2.6 Hermitian and Unitary Matrices

Example 2.6.1 The matrix

5 445 6—16i

4-5 13 7 (2.138)
6+ 16i 7 2.1
is hermitian. O

Exercise 2.6.1 Show that the matrix

7 6+ 5i
(2.139)
6-5 -3
is hermitian. u
Exercise 2.6.2 Show that A is hermitian if and only if AT = A. [|

Notice from the definition that the elements along the diagonal of a hermitian
matrix must be real. The old notion of a symmetric matrix is a special case of hermi-
tian that is limited to matrices with only real entries.

Proposition 2.6.1 If A is a hermitian n-by-n matrix, then for all V, V' € C" we
have

(AV, V) =(V, AV'). (2.140)

The proof is easy to see:
(AV. VY = (AV) %V = VIATV = Vix AV = (V, AV) (2.141)

where the first and the fourth equalities are from the definition of an inner product,
the second equality is from the property of {, and the third equality is from the
definition of a hermitian matrix.

Exercise 2.6.3 Prove the same proposition for symmetric real matrices. |

Proposition 2.6.2 If A is a hermitian, then all eigenvalues are real.

To prove this, let A be a hermitian matrix with an eigenvalue ¢ € C and an eigen-
vector V. Consider the following sequence of equalities:

c(V, V) = (cV, V) = (AV, V) = (V, AV) = (V, cV) = ¢(V, V). (2.142)

The first and fifth equalities are properties of the inner product. The second and
fourth equalities are from the definition of eigenvalue. The third equality is from
Proposition 2.6.1. Because ¢ and V are nonzero, ¢ = ¢ and hence must be real.

Exercise 2.6.4 Prove that the eigenvalues of a symmetric matrix are real. [|

63

64

Complex Vector Spaces

Proposition 2.6.3 For a given hermitian matrix, distinct eigenvectors that have dis-
tinct eigenvalues are orthogonal.

We prove this by looking at V; and V; that are distinct eigenvectors of a hermi-
tian matrix A.

AVi=cVi and AV, =V (2.143)
Then we have the following sequence of equalities:

c1(Vi, Va) = (e, Va) = (AV1, Va) = (W1, AVa)

where the first and fifth equalities are from properties of inner products, the second
and fourth equalities are by definition of eigenvector, the third equality follows from
the fact that H is hermitian, and the last equality is from the fact that eigenvalues
of hermitian matrices are real. As the left side is equal to the right side, we may
subtract one from the other to get 0:

c1(Vi, Vo) — c2(V1, Vo) = (1 — e2)(V1, V2) = 0. (2.145)

Because ¢; and ¢, are distinct, ¢; — ¢; # 0. Hence, it follows that (V;, V5) = 0 and
they are orthogonal.
We shall need one more important proposition about self-adjoint operators.

Definition 2.6.3 A diagonal matrix is a square matrix whose only nonzero entries
are on the diagonal. All entries off the diagonal are zero.

Proposition 2.6.4 (The Spectral Theorem for Finite-Dimensional Self-Adjoint
Operators.) Every self-adjoint operator A on a finite-dimensional complex vec-
tor space V can be represented by a diagonal matrix whose diagonal entries are the
eigenvalues of A, and whose eigenvectors form an orthonormal basis for V (we shall
call this basis an eigenbasis).

Hermitian matrices and their eigenbases will play a major role in our story. We
shall see in Chapter 4 that associated with every physical observable of a quantum
system there is a corresponding hermitian matrix. Measurements of that observable
always lead to a state that is represented by one of the eigenvectors of the associated
hermitian matrix.

Programming Drill 2.6.1 Write a function that accepts a square matrix and tells if it
is hermitian.

Another fundamental type of matrix is unitary. A matrix A is invertible if there
exists a matrix A~! such that

AxA =A% A=1,. (2.146)

Unitary matrices are a type of invertible matrix. They are invertible and their in-
verse is their adjoint. This fact ensures that unitary matrices “preserve the geome-
try” of the space on which it is acting.

2.6 Hermitian and Unitary Matrices

Definition 2.6.4 An n-by-n matrix U is unitary if
UxU =U"xU=1, (2.147)
It is important to realize that not all invertible matrices are unitary.

Example 2.6.2 For any 0, the matrix

cosf® —sinf 0
sinf cosf® O (2.148)

0 0 1
is a unitary matrix. (You might have seen such a matrix when studying computer
graphics. We shall see why in a few moments.) O
Exercise 2.6.5 Show that the matrix given in Equation (2.148) is unitary. |

Example 2.6.3 The matrix

L i 34
2 V3 215
3 % ;:;_% (2.149)
A N
is a unitary matrix. O
Exercise 2.6.6 Show that the matrix given in Equation (2.149) is unitary. []

Exercise 2.6.7 Show that if U and U’ are unitary matrices, then so is U » U’. (Hint:
Use Equation (2.44)). [|

Proposition 2.6.5 Unitary matrices preserve inner products, i.e., if U is unitary, then
forany V, V' € C", we have (UV, UV") = (V, V').

This proposition is actually very easy to demonstrate:
UV, UVy=(UWV) xUV = VU UV = Vi« [xV =VIsV = (V, V)
(2.150)

where the first and fifth equalities are from the definition of the inner product, the
second equality is from the properties of the adjoint, the third equality is from
the definition of a unitary matrix, and the fourth equality is due to the face that
I is the identity.

Because unitary matrices preserve inner products, they also preserve norms

UV =(UV.UV)=/(V.V)=1|V|. (2.151)

In particular, if |V| =1, then [UV| = 1. Consider the set of all vectors that have
length 1. They form a ball around the origin (the zero of the vector space). We call
this ball the unit sphere and imagine it as Figure 2.14.

65

66

Complex Vector Spaces

>y

Figure 2.14. The unit sphere
and the action of U on V.

If V is a vector on the unit sphere (in any dimension), then UV is also on the
unit sphere. We shall see that a unitary matrix is a way of rotating the unit sphere.’

Exercise 2.6.8 Show that if U is a unitary matrix and V; and V; are in C", then
AUV, UVy) =d(W, V»), (2.152)

i.e., U preserves distances. (An operator that preserves distances is called an
isometry.) |

What does unitary really mean? As we saw, it means that it preserves the geom-
etry. But it also means something else: If U is unitary and UV = V’, then we can
easily form U and multiply both sides of the equation by U' to get UTUV = UV’
or V = U'V’. In other words, because U is unitary, there is a related matrix that can
“undo” the action that U performs. U' takes the result of U’s action and gets back
the original vector. In the quantum world, all actions (that are not measurements)
are “undoable” or “reversible” in such a manner.

Hermitian matrices and unitary matrices will be very important in our text. The
Venn diagram shown in Figure 2.15 is helpful.

Exercise 2.6.9 Show that [, and —1 - [, are both hermitian and unitary. [|

Programming Drill 2.6.2 Write a function that accepts a square matrix and tells if it
is unitary.

2.7 TENSOR PRODUCT OF VECTOR SPACES

At the conclusion of Section 2.2 we were introduced to the Cartesian product, which
is one method of combining vector spaces. In this section, we study the tensor prod-
uct, which is another, more important, method of combining vector spaces. If V
describes one quantum system and V' describes another, then their tensor prod-
uct describes both quantum systems as one. The tensor product is the fundamental
building operation of quantum systems.

7 These movements of the unit sphere are important in computer graphics.

2.7 Tensor Product of Vector Spaces

Square matrices

”:_Heﬂnmaq__ ___jnggmbm__ “~%%
~ Unitary

Reader Tip. A brief warning is in order. The tensor product of two vector spaces is
perhaps one of the most difficult subjects in this chapter, as well as one of the most
essential. Do not be intimidated if you do not understand it the first time you read it.
Everyone has a hard time with tensor products. We also suggest that you read this
section in conjunction with Sections 3.4 and 4.5. All these three sections deal with
the tensor product from slightly different viewpoints. Q

Given two vector spaces V and V', we shall form the tensor product of two vector
spaces, and denote it V ® V. The tensor product is generated by the set of “tensors”
of all vectors:

{(VeV|VeVand V' €V}, (2.153)
where ® is just a symbol. A typical element of V ® V' looks like this:
(%@ V) +c1(Vi® V) + -+ cpa(Vpt @ V)), (2.154)

where Vg, Vi, ..., V,_; are elements of V and Vj, V], ..., Vp’_1 are elements of V.
We might write this as

p—1
> a(Vie V). (2.155)
i=0

The operations on this vector space are straightforward. For a given Zf:ol aq(Vi®
V!) and Zf’;ol c;(W; ® W), addition is simply the addition of summations, i.e.,

p—1 q-1
YoaVieV)+) (Wi e W). (2.156)
i=0 i=0

The scalar multiplication for a given ¢ € Cis

p—1 p—1

c- Yy a(Vi®V) =) (cxe)Vi®V)). (2.157)

i=0 i=0

67

68 Complex Vector Spaces

We impose the following important rewriting rules for this vector space:
(i) The tensor must respect addition in both V and V’:
Vi+ V)V, =VieV,+V;® V[, (2.158)

Vie(Vi+ Vi) =VieVi+Vie V. (2.159)
(ii) The tensor must respect the scalar multiplication in both V and V"
c (Vi@ =@ V)oVi=Vek V) (2.160)

By following these rewriting rules and setting elements equal to each other, we form
Ve V.

Let us find a basis for V® V'. Say, V has a basis B={By, By, ..., By,_1} and
V' has a basis B’ = {B), B, ..., B,_,}. Given that every V; € V and V/ € V' can be
written in a unique way for these bases, we can use the rewrite rules to “decompose”
every element Zf:ol ¢;(V; ® V/) in the tensor product. This will give us a basis for
V ® V. In detail, the basis for V ® V’ will be the set of vectors

{Bi® B,|j=0,1,....m—1land k=0,1,...,n—1}. (2.161)
Every Zipz_ol ci(V; ® V/) € V® V can be written as
c0.0(By ® By) + c10(Bi ® By) + -+ + cm—1,n-1(Bu-1 ® B,_;). (2.162)

The dimension of V ® V' is the dimension of V times the dimension of V'. (Re-
member that the dimension of V x V’ is the dimension of V plus the dimension of
V’. So the tensor product of two vector spaces is usually a larger space than their
Cartesian product.®) One should think of V x V' as the vector space whose states
are the states of a system V or a system V' or both. V ® V' is to be thought of as the
vector space whose basic states are pairs of states, one from system V and one from

the system V'.
Given an element of V
coBy+c1By + -+ cu_1Bu-1, (2.163)

and an element of V'’
coBy+ciB +---+c,_1B,_, (2.164)
we can associate’ the following element of V ® V':
(co x co)(Bo® By) + (co x ¢\)(By® By) + -+ + (€1 X €,)(Bu1 @ B,).
(2.165)

Let us step down from the abstract highland and see what C"* @ C”" actually looks
like. C" @ C" is of dimension mn and hence is isomorphic to C™*". What is impor-
tant is how C” ® C" is isomorphic to C"™*"*. If E| is an element of the canonical basis
of each vector space, then we might identify E; ® £y with E;,. It is not hard to see

8 But not always! Remember that 1 x 1 < 1+1and1x2 <142, etc.
9 Tt is important to notice that this “association” is not a linear map; it is something called a bilinear map.

2.7 Tensor Product of Vector Spaces

from the association given in Equation (2.165) that the tensor product of vectors is
defined as follows:

do

ay

az

as

In general, C" x C" is much smaller than C" ® C".

ap -
a -
bo
® b1 ==
b,
ay -
as -

by
b
by
bo
b
by
by
by
by
by
by
by

ao b()
ap bl
ao bz
al b()
al b1
al b2
ar b()
ar b1
aj b2
as b()
as b1

asb,

(2.166)

Example 2.7.1 For example, consider C> x C*> and C? ® C?> = C°. Consider the

vector

8
12
6
12
18

9

It is not hard to see that this is simply

eCl=C*®C3.

(2.167)

(2.168)

69

70 Complex Vector Spaces

Example 2.7.2 In contrast to the above example,

eCt=C?’@C? (2.169)

S o o o @

cannot be written as the tensor product of a vector from C? and C>. In order to see
this, consider the variables

xa

xb
a

X xc

| b|= . (2.170)

y ya
c

yb

yc

There are no solutions for the variable that will give you the required results. How-
ever, we can write the vector in Equation (2.169) as

8
0
8 0
0 1 0
= 0|+ ®|0|- (2.171)
0 0 6
0 3
0
18

This is a summation of two vectors. O

2.7 Tensor Product of Vector Spaces

For reasons that are made clear in Sections 3.4 and 4.5, we shall call a vector
that can be written as the tensor of two vectors separable. In contrast, a vector that
cannot be written as the tensor of two vectors (but can be written as the nontrivial
sum of such tensors) shall be called entangled.

3
Exercise 2.7.1 Calculate the tensor product | 4 | ® |:21:|. |
7

Exercise 2.7.2 State whether [5, 6, 3,2, 0, 1] T is a tensor product of smaller vectors
from C3 and C2. []

We will need to know not only how to take the tensor product of two vectors, but
also how to determine the tensor product of two matrices.'” Consider two matrices

boo bo1 bo2
aoo do1
A= and B=| by by by |- (2.172)
aio ai
bro b1 b

From the association given in Equation (2.165), it can be seen that the tensor prod-
uct A ® Bisthe matrix that has every element of A, scalar multiplied with the entire
matrix B. That is,

boo bo1 bo2 boo box bo2

oo { bio b1 bip| 1| bio b1 bip
bro b1 bo bro by bos
A ® B = — = = =
boo bo1 boa boo boi1 bo2

@mo | biyg biqn bip| @i-| by bix bin

bro b1 bo bro b1 b

ap,0 X boo aoo x bo1 apo x boa ao1 xboo a1 x byt aopy x b2
a0 X b1o a0 x b1 a0 x by ap1 X bio ap1 x b1 a1 x bip
a0 X bro apo xby1 apoxbrp ap1 x by ap1 xby1 apy X byp
a0 X boo aroxbo1 aroxbop a1 xbyo a1 x by ain x byy

aro xbro aroxbiy aroxbip a1 xbio a1 xbiy ai xbip

aro xbyo aroxbyr aroxbyp a1 xbyo a1 xby1 ar xbyp

(2.1;3)

10 Tt should be clear that the tensor product of two vectors is simply a special case of the tensor product
of two matrices.

71

72

Complex Vector Spaces

Formally, the tensor product of matrices is a function
® 1 O Crxn s cmnxminl (2.174)
and it is defined as
(A® B)[j, k] = A[j/n, k/m] x B[j Mod n, k Mod m]. (2.175)

Exercise 2.7.3 Calculate

342 5—i 2 1 3+4i 5-—7i
0 12 6-3 |®|10+2i 6 245 |- (2.176)
2 4440 9+3i 0 1 2409

Exercise 2.7.4 Prove that the tensor product is “almost” commutative. Take two
2-by-2 matrices A and B. Calculate A ® Band B® A. In general, although they are
not equal, they do have the same entries, and one can be transformed to the other

with a “nice” change of rows and columns. |
. 12 302 6 5

Exercise 2.7.5 Let A = |:0 1i|, B= |: . 0], and C = |:3 2:|. Calculate A ® (B®

C) and (A ® B) ® C and show that they are equal. [|

Exercise 2.7.6 Prove that the tensor product is associative, i.e., for arbitrary matri-
ces A, B, and C,

A®(BRC)=(A® B)® C. (2.177)

|

Exercise 2.7.7 Let A = |:2 3i| and B = |:; ji| Calculate (A ® B)! and AT ® Bt
and show that they are equal.]
Exercise 2.7.8 Prove that (A ® B)' = A' @ B. [|
Exercise 2.7.9 Let A, A’, B, and B’ be matrices of the appropriate sizes. Prove that
(AxA)Y®(BxB)=(A® B)x(A'® B). (2.178)

[|

If A actson V and B acts on V', then we define the action on their tensor product
as

(ARB)x(VRV)=A+xV®B*V. (2.179)

Such “parallel” actions will arise over and over again.

2.7 Tensor Product of Vector Spaces

Programming Drill 2.7.1 Write a function that accepts two matrices and constructs
their tensor product.

References: There are plenty of good references for basic linear algebra. Many of
the more elementary ones, like Gilbert and Gilbert (2004), Lang (1986), and Penney
(1998), contain many examples and intuitive drawings. Complex vector spaces are
discussed in, e.g., Nicholson (1994) and O’Nan (1976). The tensor product is found
only in more advanced texts, such as Lang (1993).

A history of the development of the subject can be found in Crowe (1994).

73

74

3

The Leap from Classical to Quantum

Everyone has lost their marbles!

Anonymous

Before we formally present quantum mechanics in all its wonders, we shall spend
time providing some basic intuitions behind its core methods and ideas. Realizing
that computer scientists feel comfortable with graphs and matrices, we shall cast
quantum mechanical ideas in graph-theoretic and matrix-theoretic terms. Everyone
who has taken a class in discrete structures knows how to represent a (weighted)
graph as an adjacency matrix. We shall take this basic idea and generalize it in sev-
eral straightforward ways. While doing this, we shall present a few concepts that
are at the very core of quantum mechanics. In Section 3.1, the graphs are without
weights. This will model classical deterministic systems. In Section 3.2, the graphs
are weighted with real numbers. This will model classical probabilistic systems. In
Section 3.3, the graphs are weighted with complex numbers and will model quantum
systems. We conclude Section 3.3 with a computer science/graph-theoretic version
of the double-slit experiment. This is perhaps the most important experiment in
quantum mechanics. Section 3.4 discusses ways of combining systems to yield larger
systems.

Throughout this chapter, we first present an idea in terms of a toy model, then
generalize it to an abstract point, and finally discuss its connection with quantum
mechanics, before moving on to the next idea.

3.1 CLASSICAL DETERMINISTIC SYSTEMS

We begin with a simple system described by a graph together with some toy marbles.
Imagine the identical marbles as being placed on the vertices of a graph. The state
of a system is described by how many marbles are on each vertex.

Example 3.1.1 Let there be 6 vertices in a graph and a total of 27 marbles. We
might place 6 marbles on vertex 0, 2 marbles on vertex 1, and the rest as described
by this picture.

3.1 Classical Deterministic Systems

00@ 10 20

(3.1)

3e([5] 4¢([3] 5e[10]

We shall denote this state as X = [6, 2,1, 5, 3, 10]". O

Example 3.1.2 The state [5, 5,0, 2,0, 15]7 (in the same 6 vertex, 27 marble system)
will correspond to

00 10 20@

(3.2)

3e([2] 4e([0] 5e|[15]

O

We are concerned not only with the states of the system, but also with the way
the states change. How they change — or the dynamics of the system — can be repre-
sented by a graph with directed edges. We do not permit an arbitrary graph. Rather,
we insist that every vertex in the graph has exactly one outgoing edge. This require-
ment will coincide with our demand that the system be deterministic. In other words,
each marble must move to exactly one place.

Example 3.1.3 An example of the dynamics might be described by the following
directed graph:

Oo@ 1o—>20

(3.3)

I~

30 404>50

The idea is that if an arrow exists from vertex i to vertex j, then in one time click,
all the marbles on vertex i will shift to vertex j.

75

76 The Leap from Classical to Quantum

This graph is easy to store in a computer as a Boolean adjacency matrix, M (for
“marbles”):

, (34)

N b WN=O

—_ O O O oo e
S O O P OO -
SO R O O O O N
SO O Rk O O O W
_ 0 O O O O s
S O O = O O W

where M[i, j] =1 if and only if there is an arrow from vertex j to vertex i.' The
requirement that every vertex has exactly one outgoing edge corresponds to the
fact that every column of the Boolean adjacency matrix contains exactly one 1. [

Let’s say that we multiply M by a state of the system X = [6, 2,1, 5, 3, 10]”. Then

we have
0 000 00O 6 0
0 000 00O 2 0
01 00 01 1 12
MX = = =Y. (3.5
0001 00O 5 5
0 01 00O 3 1
1 00 010 10 9

To what does this correspond? If X describes the state of the system at time ¢,
then Y is the state of the system at time ¢ + 1, i.e., after one time click. We can see
this clearly by looking at the formula for matrix multiplication:

5

YIil = (MX)[i] = Y M[i. K1 XT]. (3.6)

k=0

In plain English, this states that the number of marbles that will reach vertex i after
one time step is the sum of all the marbles that are on vertices with edges connecting
to vertexi.

Notice that the top two entries of Y are 0. This corresponds to the fact that there
are no arrows going to vertex 0 or vertex 1.

Exercise 3.1.1 Using the dynamics given in Equation (3.4), determine what the
state of the system would be if you start with the state [5, 5,0, 2, 0, 15]7. []

I Although most texts have M[i, j] = 1 if and only if there is an arrow from vertex i to vertex j, we shall
need it to be the other way for reasons which will become apparent later.

3.1 Classical Deterministic Systems

In general, any simple directed graph with n vertices can be represented by an
n-by-n matrix M having entries as

M([i, j]1 = 1if and only if there is an edge from vertex j to vertex i.
= 1if and only if there is a path of length 1 from vertex j to vertex i.

(3.7)

If X=[x0,X1,...,%,_1]7 is a column vector that corresponds to placing x; mar-
bles on vertex i, and if MX =Y where Y = [yo, 1, ..., yo—1]7, then there are y;
marbles on vertex j after one time click. M is thus a way of describing how the state
of the marbles can change from time ¢ to time ¢ + 1.

As we shall soon see, (finite-dimensional) quantum mechanics works the same
way. States of a system are represented by column vectors, and the way in which the
system changes in one time click is represented by matrices. Multiplying a matrix
with a column vector yields a subsequent state of the system.

Looking at the formula for Boolean matrix multiplication

n—1
Mi. j1=\/ Mli. k] A M[k. j]. (3.8)
k=0

we observe that it really shows us how to go from vertex j to vertex i in two time
clicks. The following picture is helpful:

o0

ol
(3.9)

ol

AN

on—1

There will be a path of length 2 from vertex j to vertex i if there exists (\/) some
vertex k such that there is an arrow from vertex j to vertex k and (A) an arrow from
vertex k to vertex i.

Thus, we have that

M?[i, j] = 1if and only if there is a path of length 2 from vertex j to vertex i.
(3.10)

7

78

The Leap from Classical to Quantum

For an arbitrary k we have

M*[i, j] = 1if and only if there is a path of length k from vertex j to vertex i.
(3.11)

Exercise 3.1.2 For the matrix M given in Equation (3.4), calculate M?, M3, and
MS. If all the marbles start at vertex 2, where will all the marbles end up after 6 time
steps? |

In general, multiplying an n-by-n matrix by itself several times will produce an-
other matrix whose i, jth entry will indicate whether there is a path after several
time clicks. Consider X = [xg, X1, ...,%,_1]7 to be the state where one places x,
marbles on vertex 0, x; marbles on vertex 1, ..., x,_; marbles on vertex n — 1. Then,
after k steps, the state of the marbles is Y, where Y = [yo, y1, ..., ya_1]’ = M X. In
other words, y; is the number of marbles on vertex j after k steps.

In quantum mechanics, if there are two or more matrices that manipulate states,
the action of one followed by another is described by their product. We shall take
different states of systems and multiply the states by various matrices (of the appro-
priate type) to obtain other ones. These new states will again be multiplied by other
matrices until we attain the desired end state. In quantum computing, we shall start
with an initial state, described by a vector of numbers. The initial state will essen-
tially be the input to the system. Operations in a quantum computer will correspond
to multiplying the vector with matrices. The output will be the state of the system
when we are finished carrying out all the operations.

Summing up, we have learned the following:

m The states of a system correspond to column vectors (state vectors).

m The dynamics of a system correspond to matrices.

m To progress from one state to another in one time step, one must multiply the
state vector by a matrix.

B Multiple step dynamics are obtained via matrix multiplication.

Exercise 3.1.3 What would happen if we relaxed the requirement that exactly one
edge leaves each vertex, i.e., what would happen if we permitted any graph? |

Exercise 3.1.4 What would happen if we permitted not only 0’s and 1’s but also
—1 in the adjacency matrix? Give an interpretation of this scenario in terms of
marbles. |

Exercise 3.1.5 Consider the following graph representing city streets. Single-
headed arrows (—>) correspond to one-way streets and double-headed arrows
(«—) correspond to two-way streets.

3.2 Probabilistic Systems

)
~
W

(3.12)

6 7 8[>

Imagine that it takes one time click to traverse an arrow. You may assume that ev-
eryone must move at every time click. If every corner starts with exactly one person,
where will everyone be after one time click? After two time clicks? After four time
clicks? m

Programming Drill 3.1.1 Write a program that performs our little marble experi-
ment. The program should allow the user to enter a Boolean matrix that describes the
ways that marbles move. Make sure that the matrix follows our requirement. The user
should also be permitted to enter a starting state of how many marbles are on each
vertex. Then the user enters how many time clicks she wants to proceed. The com-
puter should then calculate and output the state of the system after those time clicks.
We will make changes to this program later in the chapter.

3.2 PROBABILISTIC SYSTEMS

In quantum mechanics, there is an inherent indeterminacy in our knowledge of a
physical state. Furthermore, states change with probabilistic laws. This simply means
that the laws governing a system’s evolution are given by describing how states tran-
sition from one to another with a certain likelihood.

In order to capture these probabilistic scenarios, let us modify what we did in
the last section. Instead of dealing with a bunch of marbles moving about, we shall
work with a single marble. The state of the system will tell us the probabilities of the
marble being on each vertex. For a three-vertex graph, a typical state might look like
X=[%3.1] " This will correspond to the fact that there is a one-fifth” chance that
the marble is on vertex 0, a three-tenths chance that the marble is on vertex 1; and a
half chance that the marble is on vertex 2. Because the marble must be somewhere
on the graph, the sum of the probabilities is 1.

We must modify the dynamics as well. Rather than exactly one arrow leaving
each vertex, we will have several arrows shooting out of each vertex with real num-
bers between 0 and 1 as weights. These weights describe the probability of our
marble moving from one vertex to another in one time click. We shall restrict our

% Although the theory works with any r € [0, 1], we shall deal only with fractions.

79

80

The Leap from Classical to Quantum

attention to weighted graphs that satisfy the following two conditions: a) the sum
of all the weights leaving a vertex is 1 and b) the sum of all the weights entering a
vertex is 1. This will correspond to the fact that the marble must both go and come
from someplace (there might be loops).

Example 3.2.1 An example of such a graph is

1
1 2
3
e ——
1
6
2 1 (3.13)
3 6
] 1
6 3
o2
The adjacency matrix for this graph is
15
0§ 3
— |1 1 1
M=)1 11 (3.14)
2 1
530
|

The adjacency matrices for our graphs will have real entries between 0 and 1
where the sums of the rows and the sums of the columns are all 1. Such matrices are
called doubly stochastic.

Let us see how the states interact with the dynamics. Suppose we have a state

T . . .
X= [% é, %] that expresses an indeterminacy about the position of a marble: the

probability is % that the marble is on vertex 0, the probability is % that the marble is
on vertex 1, and the probability is % that the marble is on vertex 2.
With this interpretation, we will calculate how a state changes:

1 5 1 21

0 5 51||s %
Mx=|1 1 1||l1]|=]|2|=V 3.15
3 2 6 6 36 ()

2 1 2 6

53 013 %

3.2 Probabilistic Systems

Notice that the sum of the entries of Y'is 1. We might express this by saying

If the marble’s position is
% chance on vertex 0,
% chance on vertex 1, and
% chance on vertex 2,

then, after following the arrows, the probability of the marble’s position is
% chance on vertex 0,
% chance on vertex 1, and

% chance on vertex 2.

That is, if we have X expressing the probability of the position of a mar-
ble and M expressing the probability of the way the marble moves around, then
MX=Y= [%, %, %]T is expressing the probability of the marble’s location after
moving. If Xis the probability of the marble at time ¢, then M Xis the probability of
the marble at time ¢ + 1.

Exercise 3.2.1 Let M be as in Equation (3.14) and let X = [3, 0, 1] ", Show that the
entries of Y = M X' sum to 1. |

Exercise 3.2.2 Let M be any n-by-n doubly stochastic matrix. Let X be an n-by-1
column vector. Let the result of MX =Y.
a) If the sum of the entries of Xis 1, prove that the sum of the entries of Yis 1.
b) More generally, prove that if the sum of the entries of Xis x, then the sum of
the entries of Yis also x, i.e., M preserves the sum of the entries of a column vector
multiplied at the right of M. |

We shall multiply vectors not only on the right of a matrix, but on the left as
well. We shall posit that a row vector will also correspond to a state of a system.
Take a row vector where the sum of the entries is 1. Multiply it on the left of M.

W= [% 0, %] Then we have

o 1 2
1 2 ° 4 5 5
M=|-,0,=||! 1 1l|=|=—= —|=2Z 3.16
W [3’ ’3} 3.2 6 [9’18’18} (3.16)
350

Notice that the sum of the entries of Zis 1.

Exercise 3.2.3 Let M be any n-by-n doubly stochastic matrix. Let W be a 1-by-n
row vector. Then we have the resulting

WM = Z (3.17)

a) If the sum of the entries of W is 1, prove that the sum of the entries of Zis 1.

b) More generally, prove that if the sum of the entries of W is w, then the sum
of the entries of Zis also w, i.e., M preserves the sum of the entries of a row vector
multiplied on the left of M. [|

81

82 The Leap from Classical to Quantum

What can this possibly mean? The transpose of M

12
0 35 3
T_ |1 1 1
M= 1 1 1 (3.18)
501
i s U
corresponds to our directed graph with the arrows reversed:
1
% 2
(R —— Q
1
3
5 1 (3.19)
6 3
2 1
3 6
o2

Reversing the arrows is like traveling back in time or having the marble roll
backward. A simple calculation shows that

0 3 5||3 5
TwT — |1 1 1 =| s |=7
Mwh=11 1 Lo |=|31=2, (3.20)
5 1 2 5
5 5 0|5 18
ie.,
MW =wmT = 7", (321)

So if multiplying on the right of M takes states from time ¢ to time ¢ 4 1, then
multiplying on the left of M takes states from time ¢ to time ¢ — 1.

This time symmetry is one of the fundamental concepts of quantum mechanics
and quantum computation. Our description of system dynamics is entirely symmet-
ric: by replacing column vectors with row vectors, and forward evolution in time
with backward evolution, the laws of dynamics still hold. We shall encounter row
vectors in Chapter 4, and unravel their role. But let us now go back to M.

3.2 Probabilistic Systems 83

Let’s multiply M by itself. MM = M>:

1 5 1 5 11 13 1
0 5 5119 5 3 s 3% 36
11 1|1 1 1|=|5s 1B B 322
3 2 6 3 2 6 18 36 36 ()
2 1 2 1 1 5 11
53 0135 50 5 8 T8

The following picture can help us understand matrix multiplication with probability
entries:

o0

M0, j]
| % \ (3.23)

on—1

In order to go from vertex j to vertex i in two steps,
one can go from vertex j to vertex 0 and (multiply) go to vertex i or (add)
one can go from vertex j to vertex 1 and (multiply) go to vertex i or (add)

or (add)
one can go from vertex j to vertex n — 1 and (multiply) go to vertex i.

This is exactly the formula for multiplying matrices in Equation (2.37) on page 41.
And so we can state

M?[i, j] = the probability of going from vertex j to vertex i in 2 time clicks.

(3.24)

Exercise 3.2.4 Let

and N =

W= WIN

WIN - W~
NI—= D=
NI—= D=

be two doubly stochastic matrices. Calculate M = N and show that this is again a
doubly stochastic matrix. |

84 The Leap from Classical to Quantum

Exercise 3.2.5 Prove that the product of a doubly stochastic matrix with another
doubly stochastic matrix is also a doubly stochastic matrix. |

In general, for an arbitrary positive integer k, we have

MX[i, j] = the probability of going from vertex j to vertex i in k time clicks.

(3.25)

If M is an n-by-n doubly stochastic matrix and X is an n-by-1 column vector
whose entries sum to 1, then M* X = Y is expressing the probability of the position
of a marble after k time clicks. That is, if X = [xo, X1, ..., x,_1]7 means that there
is an x; chance that a marble is on vertex i, then MX=Y = [yo, yi» s yua]?
means that after k£ time clicks, there is a y; chance that the marble is on
vertex j.

We are not constrained to multiply M by itself. We may also multiply M by
another doubly stochastic matrix. Let M and N be two n-by-n doubly stochastic
matrices corresponding to the weighted n vertex graphs Gy, and Gy, respectively.
Then M x N corresponds to an n-vertex graph whose weight is given as

n—1

(M N)[i, j1=)_ M[i. k]N[k, j]. (3.26)
k=0

In terms of a marble, this n-vertex graph corresponds to the sum of the probabilities
of its shifting from vertex j to some vertex k in Gy and then shifting from vertex k
to vertex i in Gy So if M and N each describe some probability transition for going
from one time click to the next, M » N will then describe a probability transition of
going from time r to¢ + 1 to ¢ + 2.

Example 3.2.2 Let us tackle a real example: the stochastic billiard ball. Consider
the graph

Oe 3 (3.27)

3.2 Probabilistic Systems

Corresponding to this graph is the matrix

0 4+ 1 0
1 1
= 0 0 =
A=|? z (3.28)
3 00 3
[0 3 5 0]

Notice that A is a doubly stochastic matrix. Let us start with a single marble on
vertex 0; that is, we shall start in state [1, 0, 0, O]T. After one time click, the system
will be in state

r11 °
0,3.5.0] - (3.29)

A quick calculation shows that in another time click, the system will be in state

1T

0,0, (3.30)

| =

M1

- 2 ' -
Continuing in this fashion, we find that the marble acts like a billiard ball and contin-
ues to bounce back and forth between vertices 1,2 and 0,3. We shall meet a quantum

version of this example in the next section. O

Exercise 3.2.6 Consider the following hypothetical situation at a hypothetical col-
lege. Thirty percent of all math majors become computer science majors after one
year. Another 60% become physics majors after one year. After a year, 70% of
the physics majors become math majors and 10% of the physics majors become
computer science majors. In contrast to the other departments, computer science
students are usually very happy: only 20% of them become math majors and 20%
become physics majors after a year.

(a) Draw a graph that describes the situation.

(b) Give the corresponding adjacency matrix. Notice that it is a doubly stochastic
matrix.

(c) If a student is majoring in one of these three areas, indicate her probable
major after 2, 4, and 8 years. [|

Before moving on to the next section, let us examine an interesting example.
This shall be known as the probabilistic double-slit experiment. Consider Figure 3.1
where there is a diagram of a gun shooting bullets.

There are two slits in the wall. The shooter is a good enough shot to always
get the bullets through one of the two slits. There is a 50% chance that the bullet
will travel through the top slit. Similarly, there is a 50% chance the bullet will travel
through the bottom slit. Once a bullet is through a slit, there are three targets to
the right of each slit that the bullet can hit with equal probability. The middle target
can get hit in one of two ways: from the top slit going down or from the bottom
slit going up. It is assumed that it takes the bullet one time click to travel from the

85

86 The Leap from Classical to Quantum

Figure 3.1. Double-slit experiment with bullets.

gun to the wall and one time click to travel from the wall to the targets. The picture
corresponds to the following weighted graph:

1

(3.31)
Oe

3.2 Probabilistic Systems

Notice that the vertex marked 5 can receive bullets from either of the two slits. Also
notice that once a bullet is in position 3, 4, 5, 6, or 7, it will, with probability 1, stay
there.

Corresponding to this graph is the matrix B (for “bullets”):

(00000000 0]
10000000
10000000
0 £ 010000
B= (332)
0 £ 001000
0+ 100100
00 % 00010
(000 5 000 0 1]

In words, B describes the way a bullet will move after one time click. The matrix
B is not a doubly stochastic matrix. The sum of the weights entering vertex 0 is not
1. The sum of weights leaving vertices 3, 4, 5, 6, and 7 are more than 1. In order to
convert this to a doubly stochastic matrix, our bullets would require the ability to go
from right to left. In other words, the targets and the slits would have to be made
of some type of elastic material that could cause the bullets to ricochet as in our
stochastic billiard ball example. Rather than consider such a complicated scenario,
we shall stick to this simplified version.

Let us calculate the probabilities for the bullet’s position after two time clicks.

(00000000 0]
00000O0GO0O
00000O0GO0O
B*B=BZ=%%01OOOO (3.33)
L1 oo01000
131300100
L 0300010
[05 000 0 1]

So B? indicates the probabilities of the bullet’s position after two time clicks.
If we are sure that we start with the bullet in position 0, i.e.,

X=11,0,0,0,0,0,0,0]", (3.34)

87

88

The Leap from Classical to Quantum

then after two time clicks, the state of the bullets will be

B*X = [0, 0,0,-, -, =, —, — (3.35)

The key idea is to notice that B[S, 0] = % + % = % because the gun shoots the bullet
from position 0; hence, there are two possible ways for the bullets to get to position
5. The possibilities sum to % This is what we would expect. We revisit this example
in the next section where strange things start happening!

Let us summarize what we should retain from this section:

m The vectors that represent states of a probabilistic physical system express a type
of indeterminacy about the exact physical state of the system.

m The matrices that represent the dynamics express a type of indeterminacy about
the way the physical system will change over time. Their entries enable us to
compute the likelihood of transitioning from one state to the next.

B The way in which the indeterminacy progresses is simulated by matrix multipli-
cation, just as in the deterministic scenario.

Programming Drill 3.2.1 Modify your program from Programming Drill 3.1.1 so
that the entries in the matrices can be fractions as opposed to Boolean values.

Programming Drill 3.2.2 What would happen if there were more than two slits?
Write a program that asks a user to design a multislit experiment. The user notes
the number of slits and the number of targets to measure the bullets. Then the user
enters probabilities of the bullets’ moving from each slit to each target. An appropriate
matrix is set up and then the matrix is multiplied by itself. Have the program print the
appropriate resulting matrix and vector.

3.3 QUANTUM SYSTEMS

We are now ready to leave the world of classical probabilities and enter the world of
the quantum. As mentioned earlier, quantum mechanics works with complex num-
bers. A weight is not given as a real number p between 0 and 1. Rather, it is given
as a complex number c such that |c|? is a real number between 0 and 1.

What difference does it make how probabilities are given? What does it matter
if a probability is given directly as a real number between 0 and 1, or indirectly as
a complex number whose modulus squared is a real number between 0 and 1? The
difference is — and this lies at the very core of quantum theory — that real number
probabilities can only increase when added. In contrast, complex numbers can can-
cel each other and lower their probability. For example, if p; and p, are two real
numbers between 0 and 1, then (p; + p2) > p1 and (p1 + p2) > p,. Now let us look
at the complex case. Let ¢; and ¢; be two complex numbers with associated squares
of modulus |c{|? and |c;|%. |c1 + ¢2|*> need not be bigger than |c{|? and it also does not
need to be bigger than |c,|? .

3.3 Quantum Systems

Example 3.3.1 For example,” if ¢; = 5+ 3i and ¢; = —3 — 2i, then |¢; |2 = 34 and
leo]> = 13 but |¢; + 2> = |2 4+ i[> = 5. 5 is less than 34, and 5 is less than 13. O

The fact that complex numbers may cancel each other out when added has a
well-defined physical meaning in quantum mechanics (and in classical wave me-
chanics as well). It is referred to as interference* and it is one of the most important
concepts in quantum theory.

Let us generalize our states and graphs from the previous section. For our states,
rather than insisting that the sum of the entries in the column vector is 1, we shall
require that the sum of the modulus squared of the entries be 1. (This makes sense
because we are considering the probability as the modulus squared.) An example of
such a state is

T
1 2 2

Rather than talking about graphs with real number weights, we shall talk about
graphs with complex number weights. Instead of insisting that the adjacency matrix
of such a graph be a doubly stochastic matrix, we ask instead that the adjacency
matrix be unitary.’

For example, consider the graph

1 . i
V2 7 V2
(O —— .Q
1 (3.37)
V2
5
The corresponding unitary adjacency matrix is
L1
i oY
U=|= 4 of. (3:38)
0 0 i

3 The important point here is that the modulus squared is positive. For simplicity of calculation, we have
chosen easy complex numbers.

* The clever reader might have considered something like “negative probability” to perform the same
task as complex numbers. It turns out that much of quantum mechanics can, in fact, be done that way.
However, it is not the standard way of introducing quantum theory, and we will not take that route.

5 We defined a “unitary matrix” in Section 2.6. Remember: A matrix U is unitary if U U =1 =
Ut xU.

89

90 The Leap from Classical to Quantum

Unitary matrices are related to doubly stochastic matrices as follows: the modu-
lus squared of the all the complex entries in U forms a doubly stochastic matrix.®
The i, jth element in U is denoted U[i, j], and its modulus squared is denoted
|U[i, j]I*. By abuse of notation, we shall denote the entire matrix of modulus squares

as |U[i, j]I:
11
3 2 0
\U[i, j11* = I3 0] (3.39)
0 0 1

It is easy to see that this is a doubly stochastic matrix.
Exercise 3.3.1 Find the |U[i, j]|* for the unitary matrix
cosf —sinf 0

U=|sin® cos6 0
0 0 1

for any 0. Check that it is doubly stochastic. |

Exercise 3.3.2 Given any unitary matrix, prove that the modulus squared of each
of the entries forms a doubly stochastic matrix. |

Let us now see how unitary matrices act on states. Calculating UX = Y, we get

L 1 be 5420

2 73 30

=i i 2i | = | =2=5i)
R v a0 | (3.40)
0 0 i z 2

Notice that the sum of the modulus squares of Y'is 1.

Exercise 3.3.3 Prove that a unitary matrix preserves the sum of the modulus
squares of a column vector multiplied on its right. |

From the graph-theoretic point of view, it is easy to see what unitary means: the
conjugate transpose of the U matrix is

0

U — o |. (3.41)

> o &
o sl &

—i

% In fact, it is a symmetric doubly stochastic matrix.

3.3 Quantum Systems

This matrix corresponds to the graph

(3.42)

If U is the matrix that takes a state from time ¢ to time ¢ + 1, then U is the matrix
that takes a state from time ¢ to time ¢ — 1. If we were to multiply U' and U, we
would obtain the identity matrix /3. We can then have the following sequence of
vectors in times steps:

Vi— UV UUV=LV=V. (3.43)
Iz corresponds to the graph
1

19 e 1

* (3.44)
1
>

This means that if you perform some operation and then “undo” the operation, you
will find yourself (with probability 1) in the same state with which you began.

Example 3.3.2 Let us revisit the stochastic billiard ball example. This time we shall
make a quantum system out of it: the quantum billiard ball. Consider the graph

1
1 N L
V2 oo V2
Va4 AN
/ AN
VR TN
yd 2 2 N
Oe o3 (3.45)
. L 1 7
\\\ V2o V2o o
/
N\ S
1. AR
V2 AN V2

91

92 The Leap from Classical to Quantum

The matrix corresponding to this graph is

_ o -
1 1
L 0 0 -—L
A=| "2 V2 (3.46)
1 0 0 1
NG 7
1 1
L0 -5 5 0

Notice that this matrix is unitary. Let us start with a single marble on vertex 0, i.e.,
the state [1, 0, 0, O]T. After one time click, the system will be in the state

[O, \/g \/g 0} ' (3.47)

reflecting the 50-50 chance as in the stochastic billiard ball example. But what hap-
pens if we multiply this vector by A to determine the next state of the system? A
quick calculation will show that after the next time click, the system will be back in
state

[1,0,0,0]". (3.48)
This is in stark contrast to what happened with the stochastic billiard ball. Here,
the other paths cancel each other out (interference). We could have seen this by

noticing that in order to find the state after two time clicks, we would have had to
multiply our starting state with A x A. However, Ax A = A% = I,. O

AVAVATA™

Figure 3.2. Double-slit experiment with photons.

3.3 Quantum Systems

In order to see the interference phenomenon more clearly, we shall revisit the
double-slit experiment from Section 3.2. Rather than examine bullets, which are
relatively large objects and hence adhere to the laws of classical physics, we shall
study microscopic objects such as photons that follow the laws of quantum physics.
Rather than a gun, we shall have a laser shoot photons. (Photons are elementary
particles that are the basic ingredients of light.) We shall shoot photons through two
slits as in Figure 3.2.

Again, we shall make the assumption that a photon will pass through one of
the two slits. Each slit has a 50% chance of the photon’s passing through it. To
the right of each slit, there are three measuring devices. It is assumed that it takes
one time click to go from the laser to the wall and one time click to go from the
wall to the measuring devices. We are not interested in how large the slits are or
how far the measuring devices are from the slits. Physicists are very adept at cal-
culating many different aspects of this experiment. We are only interested in the
setup.

The following weighted graph describes the setup of the experiment:

—1+41i
NG
le
1
V2
(3.49)
Oe

—1+41i
1
V2

2e

The modulus squared of 1 1s , which corresponds to the fact that there is a 50-50

chance of the photon’s passmg through either slit. ‘ili‘

= 3, which corresponds

93

94 The Leap from Classical to Quantum

to the fact that whichever slit the photon passes through, there is a % chance of its
hitting any of the three measuring devices to the right of that slit.”
The adjacency matrix, P (for “photons”), of this graph is

(0 0 0 0000 0]

%0 0 00 00O

%0 0 00 00O
b 0 —172 0 10000 (3:50)
0%001000
0%%00100
00%00010

0 0 0000 1]

This matrix is not unitary. The reason this matrix fails to be unitary is that we have
not placed all the arrows in our graph. There are many more possible ways the pho-
ton can travel in a real-life physical situation. In particular, the photon might travel
from right to left. The diagram and matrix would become too complicated if we
put in all the transitions. We are simply trying to demonstrate the phenomenon of
interference and we can accomplish that even with a matrix that is not quite unitary.

The modulus squared of the P matrix is exactly the same as that of the bullet’s

matrix, i.e.,
(0000000 0]
10000000
10000000
1
pri 2|0 3 010000 251
0L 001000
0L 100100
00100010
(000 000 0 1]

In fact, we chose our complex numbers so that | P[i, j]|*> would be equal to B of
Section 3.2. This means that nothing strange happens after one time click.

7 The actual complex number weights are not our concern here. If we wanted to calculate the actual
numbers, we would have to measure the width of the slits, the distance between them, the distance from
the slits to the measuring devices, etc. However, our goal here is to clearly demonstrate the interference
phenomenon, and so we chose the above complex numbers simply because the modulus squared are
exactly the same as in the bullet’s case.

3.3 Quantum Systems

So far, everything looks normal. Let us see what happens if we calculate the
transition matrix after two time clicks.

0 0 0 000 0 0
0 0 0O 000 0 0
0 0 0 000 0 0
- g 1 0 0 0 0
pr=| V2 v (3.52)
%%001000
—1+i 1-i
0 =H 00100
—1-i —1-i
=0 200010
—1+i 1—i
0 000 0 1]

How do we interpret this in terms of probability? Let us look at the modulus
squared of each of the entries.

(0000000 0]

00000O0GO0O

00000O0GO0O
o |30 10000
IP[l,J]I—%%O()lOOO (3.53)

0+ 100100

Lolooo1o0

[: 05000 0 1]

This matrix is almost exactly the same as B” of Section 3.2, but with one glaring
difference. B*[5,0] = % because of the two ways of starting at position 0 and ending
at position 5. We added the nonnegative probabilities % + % = % However, with a
photon that follows the laws of quantum mechanics, the complex numbers are added
as opposed to their probabilities.

thus giving us | P?[5, 0]|*> = 0. In other words, although there are two ways of a pho-
ton’s going from vertex O to vertex 5, there will be no photon at vertex 5.

How is one to understand this phenomenon? For hundreds of years, physicists
have had a simple explanation for interference: waves. A familiar observation such

95

96

The Leap from Classical to Quantum

as two pebbles thrown into a pool of water will easily convince us that waves in-
terfere, sometimes reinforcing each other, sometimes canceling each other. Thus,
the double-slit experiment points to the wave-like nature of light. At the same time,
another crucial experiment in quantum mechanics, namely the photoelectric effect,
points toward a different direction: light is absorbed and emitted in discrete quanti-
ties — photons. It is as if light (and matter) has a double nature: on some occasions it
acts as a beam of particles, and at other times it acts like a wave.

It is important to notice that the experiment can be done with a single photon
shot from vertex 0. Even in this scenario, interference will still occur. What is going
on here?

The naive probabilistic interpretation of the position of the photon following the
bullet metaphor of the previous section is thus not entirely adequate. Let the state
of the system be given by X = [co, c1, ..., c,_1]7 € C". It is incorrect to say that the
probability of the photon’s being in position k is |c|>. Rather, to be in state X means
that the particle is in some sense in all positions simultaneously. The photon passes
through the top slit and the bottom slit simultaneously, and when it exits both slits,
it can cancel ifself out. A photon is not in a single position, rather it is in many
positions, a superposition.

This might generate some justifiable disbelief. After all, we do not see things in
many different positions. Our everyday experience tells us that things are in one
position or (exclusive or!) another. How can this be? The reason we see particles
in one particular position is because we have performed a measurement. When we
measure something at the quantum level, the quantum object that we have mea-
sured is no longer in a superposition of states, rather it collapses to a single classical
state. So we have to redefine what the state of a quantum system is: a system is in
state X means that after measuring it, it will be found in position i with probability
lei |2

What are we to make of these strange ideas? Are we really to believe them?
Richard Feynman, in discussing the double-slit experiment (Feynman, 1963, Vol.
III, page 1-1) waxes lyrical:

We choose to examine a phenomenon which is impossible, absolutely impossible,
to explain in any classical way, and which has in it the heart of quantum mechan-
ics. In reality, it contains the only mystery. We cannot make the mystery go away
by “explaining” how it works. We will just tell you how it works.

It is exactly this superposition of states that is the real power behind quantum
computing. Classical computers are in one state at every moment. Imagine putting a
computer in many different classical states simultaneously and then processing with
all the states at once. This is the ultimate in parallel processing! Such a computer
can only be conceived of in the quantum world.

Let us review what we have learned:

m States in a quantum system are represented by column vectors of complex num-
bers whose sum of moduli squared is 1.

B The dynamics of a quantum system is represented by unitary matrices and is
therefore reversible. The “undoing” is obtained via the algebraic inverse, i.e.,
the adjoint of the unitary matrix representing forward evolution.

3.4 Assembling Systems

m The probabilities of quantum mechanics are always given as the modulus square
of complex numbers.

® Quantum states can be superposed, i.e., a physical system can be in more than
one basic state simultaneously.

Programming Drill 3.3.1 Modify your program from Programming Drill 3.2.1 so
that you allow the entries to be complex numbers as opposed to fractions.

Programming Drill 3.3.2 Modify your program from Programming Drill 3.2.2 so
that you allow transitions from the many slits to the many measuring devices to be
complex numbers. Your program should identify where there are interference phe-
nomena.

3.4 ASSEMBLING SYSTEMS

Quantum mechanics also deals with composite systems, i.e., systems that have more
than one part. In this section, we learn how to combine several systems into one.
We shall talk about assembling classical probabilistic systems. However, whatever
is stated about probabilistic systems is also true for quantum systems.

Consider two different marbles. Imagine that a red marble follows the probabil-
ities of the graph G

1
1 2
........ D
Qe = el ”
1
6
Gy =) 1 (3.55)
3 6
S 1
6 3
o2
whose corresponding adjacency matrix is
0
M= (3.56)

O o= olwn

WIN W=

97

98

The Leap from Classical to Quantum

Furthermore, there is also a blue marble that follows the transitions given by the
graph

1 1
3 2 3
3
Gy = Sae T ep~ (3.57)
2
3
i.e., the matrix
12
N=|? 3 (3.58)
2 1
3 3

How does a state for a two-marble system look? Because the red marble can be
on one of three vertices and the blue marble can be on one of two vertices, there
are 3 x 2 = 6 possible states of the combined system. This is the tensor product of a
3-by-1 vector with a 2-by-1 vector. A typical state might look like this:

Oa [%]
0b| O
la 1—28
X = 5, (3.59)
b | 3
2a | 0
26 | 1]

which would correspond to the fact that there is a

% chance of the red marble being on vertex 0 and the blue marble being on
vertex a,

0 chance of the red marble being on vertex 0 and the blue marble being on
vertex b,

1—28 chance of the red marble being on vertex 1 and the blue marble being on
vertex a,

% chance of the red marble being on vertex 1 and the blue marble being on
vertex b,

0 chance of the red marble being on vertex 2 and the blue marble being on
vertex a, and

% chance of the red marble being on vertex 2 and the blue marble being on
vertex b.

How does a system with these two marbles change? What is its dynamics? Imag-
ine that the red marble is on vertex 1 and the blue marble is on vertex a. We may
write this state as “la.” What is the probability of going from state 1a to state 25?
Obviously, the red marble must move from vertex 1 to vertex 2 and (multiply) the
blue marble must move from vertex a to vertex b. The probability is £ x 2 = 2.

In general, for a system to go from state ij to a state i’j’ we must multiply the

3.4 Assembling Systems

probability of going from state i to state i’ with the probability of going from state j
to state j'.

M{i"i]x Nj'.]
ij iy (3.60)

For the changes of all states, we have to do this for all entries. We are really giving
the tensor product of two matrices as defined in Equation (2.175) of Section 2.7.

0 T2
1L o2 IR]
0olol3 3 113 3| 5|3 3
2 1| 62 1| 62 1
3 3 _3 3_ _3 3_
1_; 2 | 1_1 2 | 1_; 2]
_q |13 3| 1|3 3| 1|3 3
MeN=2131, ;| 2|, 1| 6|2 1
3 3 _3 3_ _3 3_
2_1 2] , 1 2] 12
2123 3| 1|3 3| |3 3
312 1| 3|2 1 2 1
L _3 3_ _3 3_ 3 3 i
0a 0b la 1b 2a 2b
r 1 2 5 10 7
2 1 10 5
1 2 1 2 1 2
a5 5 5 P 0w T (3.61)
- 2 1 2 1 2 1 *
|5 5 5§ & &%
2| 2 5 F 2 0 0
4 2 2 1
265 5 5 g5 0 0

The graph that corresponds to this matrix, Gy x Gy — called the Cartesian product
of two weighted graphs — has 28 weighted arrows. We shall simply fill in those arrows
that correspond to the third column of M ® N:

Oae o0b

1
6
(N
lae olb (3.62)
2
1 9
9
2ae o2b

Exercise 3.4.1 Complete the graph in Equation (3.62) on a large piece of paper.
[]

99

100

The Leap from Classical to Quantum

Exercise 3.4.2 Find the matrix and the graph that correspond to N ® N. |

In quantum theory, the states of two separate systems can be combined using
the tensor product of two vectors and the changes of two systems are combined by
using the tensor product of two matrices. The tensor product of the matrices will
then act on the tensor product of the vectors. However, it must be stressed that in
the quantum world there are many more possible states than just states that can be
combined from smaller ones. In fact, the states that are not the tensor product of
the smaller states are the more interesting ones. They are called entangled states.
We shall see them again in Section 4.5. Similarly, there are many more actions on a
combined quantum system than simply that of the tensor product of the individual
system’s actions.

In general, the Cartesian product of an n-vertex graph with an »n’-vertex graph is
an (n x n')-vertex graph. If we have an n-vertex graph G and we are interested in m
different marbles moving within this system, we would need to look at the graph

G"=GxGx---xG, (3.63)
—_—

m times

which will have #n™ vertices. If Mg is the associated adjacency matrix, then we will
be interested in

ME" =Mg® Mg ® -+ ® Mg, (3.64)

m times

which will be a n™-by-n" matrix.

One might think of a bit as a two-vertex graph with a marble on the 0 vertex
or a marble on the 1 vertex. If one wished to represent m bits with a single marble,
one would need a 2™ vertex graph, or equivalently, a 2”'-by-2" matrix. So there is
exponential growth of the resources needed for the number of bits under discussion.

This exponential growth is actually one of the main reasons Richard Feynman
started talking (Feynman, 1982) about quantum computing in the first place. He
realized that because of this exponential growth, it would be hard for a classical
computer to simulate such a system. He then asked whether a prospective quantum
computer, with its inherent ability to perform massive parallel processing, might be
able to accomplish the task. After all, Nature can keep up with herself! We discuss
this exponential growth again in Section 5.1.

Reader Tip. It might be a good idea to flip through Section 2.7 again now that you
have developed some intuition about the tensor product. Q

Let us summarize:

B A composite system is represented by the Cartesian product of the transition
graphs of its subsystems.

3.4 Assembling Systems

m If two matrices act on the subsystems independently, then their tensor product
acts on the states of their combined system.

m There is an exponential growth in the amount of resources needed to describe
larger and larger composite systems.

Exercise 3.4.3 Let

and N =

W W=
Wi— W
ST ST
[SIE ST

Calculate M ® N and find its associated graph. Compare this graph to Gy x Gy. B

Exercise 3.4.4 Prove a general theorem: given two square matrices M and N with
associated weighted graphs Gy and Gy, show that the two graphs

GM®N = GM X GN (365)
are essentially the same (isomorphism of weighted graphs). [|

Exercise 3.4.5 Prove a general theorem: given two weighted graphs G and H with
associated adjacency matrices Mg and My, show the equality of matrices

Mexn = Mg ® Mpy. (3.66)
|

Exercise 3.4.6 In Exercise 2.7.4, you proved the essential commutativity of the ten-
sor product of matrices, that is, for matrices M and N, we have the following isomor-
phism:

MN=N®M. (3.67)
What does this correspond to in terms of marbles moving on graphs? |

Exercise 3.4.7 In Exercise 2.7.9, you proved that for matrices of the appropriate
sizes M, M’', N, and N', we have the following equation:

MxM)YR(N*xN)=(M® N)x(M @ N'). (3.68)
What does this correspond to in terms of marbles moving on graphs? []

References: The relationship between graphs and matrices can be found in any
book of discrete mathematics, e.g., Grimaldi (2003), Ross and Wright (2003), and
Rosen (2003). The connection between the number of paths in a graph and matrix
multiplication can be found in many books, e.g., Section 11.3 of Ross and Wright
(2003). The rest of this chapter consists of generalizations of this idea with a view
toward basic quantum mechanics.

101

102 The Leap from Classical to Quantum

To learn elementary quantum mechanics, see the references at the end of
Chapter 4.

The double-slit experiment is discussed in depth in Chapter 1 of Volume III of
Feynman (1963). Feynman derives many of the properties of quantum mechanics
from this simple experiment. Definitely worth the read!

To learn more about the tensor product of vector spaces, see the references at
the end of Chapter 2.

4

Basic Quantum Theory

Reality is that which, when you stop believing in it, does not
go away.
Philip K. Dick!

In Chapters 1 and 2 we developed the necessary mathematical apparatus and termi-
nology that will be used throughout this book. Chapter 3 has provided some heuris-
tics and gently led us to the threshold of quantum mechanics. It is now time to open
the door, introduce the basic concepts and tools of the trade, and continue our jour-
ney to quantum computing.2

In Section 4.1 we spend a few words on the motivations behind quantum me-
chanics. We then introduce quantum states and how they are distinguishable from
one another through observations. Section 4.2 describes observable physical quanti-
ties within the quantum framework. How observable quantities are measured is the
topic of Section 4.3. The dynamics of quantum systems, i.e., their evolution in time,
is the focus of Section 4.4. Finally, in Section 4.5, we revisit the tensor product and
show how it describes the way in which larger quantum systems are assembled from
smaller ones. In the process, we meet the crucial notion of entanglement, a feature
of the quantum world that pops up again in the chapters ahead.

4.1 QUANTUM STATES

Why quantum mechanics? To answer this question, we have to hearken back in time
to the dawn of the twentieth century. Classical mechanics still dominated the scene,
with its double-pronged approach: particles and waves. Matter was considered to be

! The quotation is taken from Dick’s 1978 lecture How to build a Universe that does not fall apart two
days later, freely available on the Web at http://deoxy.org/pkd_how2build.htm.

2 No attempt will be made to present the material in an exhaustive historical manner. The curious reader
can refer to the references at the end of this chapter for a plethora of good, comprehensive introduc-
tions to quantum mechanics.

103

http://deoxy.org/pkd

104 Basic Quantum Theory

r\/\/\/\ A/\/\q

Figure 4.1. Young’s double-slit experiment.

ultimately composed of microscopic particles, and light was thought of as continuous
electromagnetic waves propagating in space.

The dichotomy — particles versus waves — was proven false by several ground-
breaking experiments. For instance, the diffraction experiment shows that a beam
of subatomic particles hitting a crystal diffract following a wave-like pattern, en-
tirely similar to the diffraction pattern of light itself. By the mid-twenties, physicists
started associating waves to all known particles, the so-called matter waves (the first
proposal was made by French physicist Louis De Broglie in 1924 in his doctoral
dissertation).

The photoelectric effect (observed by Hertz in 1887) showed that an atom hit
by a beam of light may absorb it, causing some electrons to transition to a higher-
energy orbital (i.e., farther from the nucleus). Later on, the absorbed energy may
be released in the form of emitted light, causing the excited electrons to revert to a
lower orbital. What the photoelectric effect unraveled was that light-matter trans-
actions always occur through discrete packets of energy, known as photons (the
concept was introduced by Einstein in his seminal 1905 paper, as a way to account
for the photoelectric effect). Photons act as genuine particles that can get absorbed
and emitted, one at a time.

Further experimental evidence from many quarters accumulated over time,
strongly suggesting that the old duality particle-wave theory must be replaced by
a new theory of the microscopic world in which both matter and light manifest a
particle-like and a wave-like behavior. Time was ripe for the conceptual framework
of quantum mechanics.

In Chapter 3 we met a toy version of the double-slit experiment; as it turns out,
this was an actual experiment, indeed an entire series of related experiments, the
first one being carried out with light by the English polymath Thomas Young around
1801. Before we move on, it is worth our while to revisit it briefly, as it contains most
of the main ingredients that make up quantum’s magic.

One shines light at a boundary with two slits that are very close to each other.
The pattern of the light to the right of the boundary will have certain regions that
are dark and certain others that are bright, as depicted in Figure 4.1.

The reason why there are regions on the screen with no light is that light waves
are interfering with each other. Light is propagating as a single wave from its source;

4.1 Quantum States

Figure 4.2. Young’'s double-slit experiment with
one slit closed.

the two slits cause this wave to split into two independent ones, which can then
interfere with each other when reaching the screen. Some regions are going to be
darker, others are going to be brighter, depending on whether the two waves are in
phase (positive interference) or out of phase (negative interference).

What would happen if we closed off one of the slits? In that case, there is no
splitting and therefore no interference pattern whatsoever (Figure 4.2).

Two remarks on this seminal experiment are in order:

B As we have already pointed out in Chapter 3, the double-slit experiment can be
done with just one photon at a time. Rather than spotting patterns of lighter or
darker light on the screen, we are now looking for which region is more or less
likely for the single photon to land. The same pattern can then be viewed as de-
scribing the probability for a certain region to get hit by the photon. The natural
question then is, if there is a single photon why would there be any interference
pattern? Yet, experiments have shown that such a pattern is there. Our photon
is a true chameleon: sometimes it behaves as a particle and sometimes as a wave,
depending on how it is observed.

m The double-slit experiment is not only about light: one can perform it equally
well with electrons, protons, and even atomic nuclei, and they will all exhibit
exactly the same interference behavior.> Once again, this clearly indicates that
the rigid distinction between waves and particles as a paradigm of description of
the physical world is untenable at the quantum level.

In the rest of this section, we are going to introduce the basic mathematical de-
scription of a quantum physical system. We shall restrict ourselves to two simple
examples, to illustrate the basic machinery:

B a particle confined to a set of discrete positions on a line
B a single-particle spin system

3 Such experiments have indeed been performed, only much later than Young’s original version of the
double-slit experiment. We invite you to read about this fascinating slice of experimental physics in
Rodgers (2002).

105

106

Basic Quantum Theory

Consider a subatomic particle on a line; moreover, let us suppose that it can

only be detected at one of the equally spaced points {xo, X1, ..., X,—1}, Where x; =
Xo + 8x, xp = x1 + 8x, ..., with §x some fixed increment.
X0 X e X e Xn—1
4.1)
° ° ° °

In real life, a particle can of course occupy any of the points of the line, not just
a finite subset thereof. However, if we followed this route, the state space of our
system would be infinite dimensional, requiring a considerably larger mathematical
apparatus than the one covered in the last chapters. Whereas such an apparatus is
vital for quantum mechanics, it is not needed for an exposition of quantum comput-
ing.* For our current exposition, we can thus assume that the set {xg, X1, ..., X,_1} is
composed of a great many points (n large) and that éx is tiny, thereby providing a
reasonably good approximation of a continuous system.

We are now going to associate to the current state of the particle an n-
dimensional complex column vector [co, c1, ..., cp_1].

The particle being at the point x; shall be denoted as |x;), using the Dirac ket
notation. (Do not worry about the funny symbol: it will be explained momentarily.)
To each of these n basic states, we shall associate a column vector:

Ixo) —> [1,0,....0]7
Ix1) — [0,1,....0]" (4.2)

[Xn—1) +—> [0, 0,.... 1]T

Observe that these vectors form the canonical basis of C". From the standpoint
of classical mechanics, the basic states in Equation (4.2) are all we shall ever need.
Not so in quantum mechanics: experimental evidence testifies to the fact that the
particle can be in a strange fuzzy blending of these states (think again of the double-
slit!). To catch up with Nature, we shall make a bold leap by positing that all vectors
in C" represent a legitimate physical state of the particle.

What can all this possibly mean?

An arbitrary state, which we shall denote as |y/), will be a linear combination of
|X0), |X1), - .., |¥n—1), Dy suitable complex weights, co, ci, . . ., ¢4,—1, kKnown as complex
amplitudes’

[¥) = colxo) + c1lx1) + -+ + Cu11Xn-1). (4.3)

4 We mention in passing that in computer simulation one must always turn a continuous physical system
(classical or quantum) into a discrete one: computers cannot deal with infinities.

5 This name comes from the fact that |v) is indeed a (complex) wave when we study its time evolution, as
we shall see at the end of Section 4.3. Waves are characterized by their amplitude (think of the intensity
of a sound wave) — hence the name above — as well as by their frequency (in case of sound waves, their
pitch). As it turns out, the frequency of |y) plays a key role in the particle’s momentum. You can think
of Equation (4.3) as describing |¢) as the overlap of n waves, the |x;), each contributing with intensity
¢i.

4.1 Quantum States

Thus, every state of our system can be represented by an element of C" as
1Y) —> [co, ¢ty v vy na] (4.4)

We say that the state |y) is a superposition of the basic states. |y) represents the
particle as being simultaneously in all {xy, x1, ..., x,_1} locations, or a blending of
all the |x;). There are, however, different possible blendings (much like in the recipe
for baking an apple pie you can vary the proportions of the ingredients and obtain
different flavors). The complex numbers cy, c1, ..., c,—1 tell us precisely which su-
perposition our particle is currently in. The norm square of the complex number c;
divided by the norm squared of |¢) will tell us the probability that, after observing
the particle, we will detect it at the point x;:

2 2
|cil |cil

WP~ 3 e

Observe that p(x;) is always a positive real number and 0 < p(x;) < 1, as any
genuine probability should be.

When [|¢/) is observed, we will find it in one of the basic states. We might write
it as®

p(xi) = (4.5)

V)

Example 4.1.1 Let us assume that the particle can only be at the four points
{xo, X1, X2, x3}. Thus, we are concerned with the state space C*. Let us also assume
that now the state vector is

s |). (4.6)

—3—1i

—2i
= - | (4.7)
l
2

We shall calculate the probability that our particle can be found at position x,. The
norm of |¢) is given by

) =] =3 —il> 4| — 2>+ |i|> + |22 = 4.3589. (4.8)
The probability is therefore
lil”

ap 0.052624. (4.9)

% The wiggly line is used throughout this chapter to denote the state of a quantum system before and
after measurement.

107

108

Basic Quantum Theory

Exercise 4.1.1 Let us assume that the particle is confined to {xo, xi, ..., x5} and the
current state vector is
) =[2—1i,2i,1—i1,-2i,2]". (4.10)
What is the likelihood of finding the particle at position x3? |
Kets can be added: if
W) = colxo) +crlxn) -+ + cutlxar) = [eos ety]’ (4.11)
and
[y = chlxo) + cplxr) + -+ ¢y 1xu1) = [chy ls s q]T, (4.12)
then
W) + 1) = (co +cp)lxo) + (c1 +Dx) + - 4 (et + oy xn-1)
=[co+cher+¢), . iena+] (4.13)
Also, for a complex number ¢ € C, we can scalar multiply a ket by c:
clyr) = ceolxo) + cerlx1) + -+ cCutlXn1) = [cco, cer, ... cenn]t. (4.14)
What happens if we add a ket to itself?
W) +1¥) =2|¢) =[co+co.ci+c1,y oo Cj+Cjyenn, Caot +cn1]”
= [2¢0, 2¢1, ..., 2¢), -, 2¢01] " (4.15)
The sum of the moduli squared is
S = Reol® + 2e1 + - + 26511 = 2ol + 2Jer’ + -+ 2ena
=22(lcol* + ler P + -+ + e). (4.16)

For the state 2|y), the chance that the particle will be found in position j is

p(x) = 2¢° _ 2|¢)I?
! A 22(lcol® + ler1> + - + len1l?)
lc;I?

el FlalP A+ e P 17
In other words, the ket 2|yr) describes the same physical system as |). Notice that we
could replace 2 with an arbitrary ¢ € C and get the same results. Geometrically, the
vector |¢) and all its complex scalar multiples c|v/), i.e., the entire subspace generated
by |¢), describe the same physical state. The length of |¢) does not matter as far as
physics goes.

Exercise 4.1.2 Let |¢) be [co,ci, ..., cn1]7. Check that multiplying |) by any
complex number ¢ will not alter the calculation of probabilities. (Hint: Factor out ¢
in the ratio.) [

4.1 Quantum States

Example 4.1.2 The vectors

1+i 2+ 4i
Y1) = and [y) = (4.18)
i 3i—1

differ by the factor 3 + i (verify it!), and are thus representatives of the same quan-

tum state. O

Exercise 4.1.3 Do the vectors [1 47,2 —i]” and [242i,1 —2i]” represent the
same state? |

As we can multiply (or divide) a ket by any (complex) number and still have a
representation of the same physical state, we may as well work with a normalized

[¥), i.e.,

l::{f—il (4.19)
which has length 1.7
Example 4.1.3 The vector [2 — 3i, 1 + 2i]” has length given by

V12 =30 + 1+ 2i2 = 4.2426. (4.20)

We can normalize it by simply dividing by its length:

ﬁ[z —3i,142i]" =[0.41714 — 0.70711i, 0.23570 + 0.47140i]7. (4.21)
U
Exercise 4.1.4 Normalize the ket
W) =[3—1i,246i,7—8i,6.3+4.9i,13i,0,21.1]". (4.22)
[]
Exercise 4.1.5 (a) Verify that the two state vectors [*/72, ‘/TE]T and [4, —‘/TZ]T are

each of length 1 in C2. (b) Find the vector on the unit ball of C? representing the
superposition (addition) of these two states. [|

Given a normalized ket |¢/), the denominator of Equation (4.5) is 1, and hence,
the equation reduces to

p(x) = leil. (4.23)

We are now done with our first motivating example. Let us move on to the sec-
ond one. In order to talk about it, we need to introduce a property of subatomic
particles called spin. As it turns out, spin will play a major role in our story, because
it is the prototypical way to implement quantum bits of information, or qubits, which
we shall encounter in Section 5.1.

7 In Section 3.3, we limited ourselves to normalized complex vectors. Now you see why!

109

110 Basic Quantum Theory

Magnets

Source of

particles ///
o

Figure 4.3. The Stern—-Gerlach experiment.

U22I0g

What is spin? The Stern—Gerlach experiment (first performed in 1922) showed
that an electron in the presence of a magnetic field will behave as if it were a charged
spinning top: it will act as a small magnet and strive to align itself to the external
field. The Stern—Gerlach experiment (as shown in Figure 4.3) consists of shooting a
beam of electrons through a nonhomogeneous magnetic field oriented in a certain
direction, say, vertically (z direction). As it happens, the field splits the beam into
two streams, with opposite spin. Certain electrons will be found spinning one way,
and certain others spinning the opposite way.

With respect to a classical spinning top, there are two striking differences:

m First, the electron does not appear to have an internal structure, by itself it is just
a charged point. It acts as a spinning top but it is no top! Spin is therefore a new
property of the quantum world, with no classical analog.

B Secondly, and quite surprisingly, all our electrons can be found either at the
top of the screen or at the bottom, none in between. But, we had not prepared
the “spinning” electrons in any way before letting them interact with the mag-
netic field. Classically, one would have expected them to have different magnetic
components along the vertical axis, and therefore to be differently pulled by the
field. There should be some in the middle of the screen. But there isn’t. Con-
clusion: when the spinning particle is measured in a given direction, it can only
be found in two states: it spins either clockwise or anticlockwise (as shown in
Figure 4.4).

(D B

Figure 4.4. Particles with spin.

4.1 Quantum States

For each given direction in space, there are only two basic spin states. For the
vertical axis, these states have a name: spin up | 1) and spin down | |). The generic
state will then be a superposition of up and down, or

[¥) = col 1)+l 1) (4.24)

Just like before, ¢ is the amplitude of finding the particle in the up state, and simi-
larly for ;.

Example 4.1.4 Consider a particle whose spin is described by the ket

) =@ —4)I 1)+ (T+2)). (4.25)
The length of the ket is
VI3 = 4i2 +17 4 2i|> = 8.8318. (4.26)
Therefore, the probability of detecting the spin of the particle in the up direction is
3—4i]*> 25
=—=—. 427
Pt ="cie = 78 (4.27)
The probability of detecting the spin of the particle in state down is
7+2i> 53
= =_. 428
) 8.8318% 78 (4.28)
O

Exercise 4.1.6 Let the spinning electron’s current state be |¢) = 3i| 1) — 2| |).
Find the probability that it will be detected in the up state.

Exercise 4.1.7 Normalize the ket given in Equation (4.25). |

In Chapter 2, the inner product was introduced as an abstract mathematical
idea. This product turned a vector space into a space with a geometry: angles, or-
thogonality, and distance were added to the canvas. Let us now investigate its
physical meaning. The inner product of the state space gives us a tool to com-
pute complex numbers known as transition amplitudes, which in turn will enable
us to determine how likely the state of the system before a specific measurement
(start state), will change to another (end state), affer measurement has been carried
out. Let

Co o
a , ¢
Wy=1 and [y)=| (4.29)
_Cn—] N _C;,_]]

be two normalized states. We can extract the transition amplitude between state |)
and state |/') by the following recipe: |¢) will be our start state. The end state will be
a row vector whose coordinates will be the complex conjugate of |/’) coordinates.

111

112

Basic Quantum Theory

Such a state is called a bra, and will be denoted (|, or equivalently

W' =) =[cp el 0] (4.30)

To find the transition amplitude we multiply them as matrices (notice that we put
them side by side, forming a bra—ket, or bra(c)ket, i.e., their inner product):

- v 7
=c¢yxcotcyxcr+ | XCp.

(4.31)

We can represent the start state, the ending state, and the amplitude of going
from the first to the second as the decorated arrow:

A
ey (432)

V)

This recipe is, of course, none other than the inner product of Section 2.4. What
we have done is simply split the product into the bra—ket form. Although this is
mathematically equivalent to our previous definition, it is quite handy for doing
calculations, and moreover opens up an entirely new vista: it shifts the focus from
states 1o state transitions.®
Note: The transition amplitude between two states may be zero. In fact, that hap-
pens precisely when the two states are orthogonal to one another. This simple fact
hints at the physical content of orthogonality: orthogonal states are as far apart as
they can possibly be. We can think of them as mutually exclusive alternatives: for
instance, an electron can be in an arbitrary superposition of spin up and down, but
after we measure it in the z direction, it will always be either up or down, never
both up and down. If our electron was already in the up state before the z di-
rection measurement, it will never transition to the down state as a result of the
measurement.

Assume that we are given a normalized start state |i) and an orthonormal basis
{lbo), |b1), ..., |bp—1)}, representing a maximal list of mutually exclusive end states
associated with some specific measurement of the system. In other words, we know
beforehand that the result of our measurement will necessarily be one or the other
of the states in the basis, but never a superposition of any of them. We show in
Section 4.3 that for every complete measurement of a quantum system there is an
associated orthonormal basis of all its possible outcomes.

8 This line of thought has been pursued by some researchers, in the ambitious attempt to provide a
satisfactory interpretation of quantum mechanics. For instance, Yakhir Aharonov and his colleagues
have in recent years proposed a model called the two-vector formalism, in which the single vector
description is replaced with the full bra-ket pair. The interested reader can consult Aharonov’s recent
book Quantum Paradoxes (Aharonov and Rohrlich, 2005).

4.1 Quantum States 113

We can express |y) in the basis {|bg), |b1), ..., |b,—1)} as
|} = bolbo) + b11b1) + -+ + by—1lbu-1). (4.33)

We invite you to check that b; = (b;|v) and that |bo|? + [by|> + - - - + |by_1 > = 1.
It is thus natural to read Equation (4.33) in the following way: each |b;|? is the
probability of ending up in state |b;) after a measurement has been made.

1bo)
(bolr)
) 1b1)
1Y)
1¥)
(bilyr)
(4.34)
|bi)
(bn—1l¥r)
|bn—1)
Exercise 4.1.8 Check that the set {|xo), |x1) ..., |x,—1)} is an orthonormal basis for
the state space of the particle on the line. Similarly, verify that {| 1), | |)} is an or-
thonormal basis of the one-particle spin system. |

From now on, we shall use the row—column and the bra—ket notation introduced
earlier interchangeably, as we deem fit.”
Let us work through a couple of examples together.

Example 4.1.5 Let us compute the bra corresponding to the ket [) = [3, 1 — 2i].
It is quite easy; we take the complex conjugate of all the entries, and list them:
(y] =1[3,142i]. 0

Example 4.1.6 Let us now compute the amplitude of the transition from
[y) = 72[1 i1 to |p) = */TE[i, —1]7. We first need to write down the bra correspond-
ing to the end state:

(¢l = —[—i, —1]. (4.35)

 An historical note is in order: the bra—ket notation, which is now ubiquitous in quantum mechanics,
was introduced by the great physicist Paul A.M. Dirac around 1930.

114

Basic Quantum Theory

Now we can take their inner product:

(@, V) = —i. (4.36)
|

Exercise 4.1.9 Calculate the bra corresponding to the ket [) = [3 4+, —2i]7. ®

Exercise 4.1.10 Calculate the amplitude of the transition from g[i, —1]7 to
L2101, -i]". n

Observe that in the calculation of transition amplitudes via the inner product, the
requirement that the representatives be normalized states can be easily removed by
simply dividing the hermitian product by the product of the length of the two vec-
tors (or equivalently, normalizing your states first, and then computing their inner
product). Here is an example.

Example 4.1.7 Let us calculate the amplitude of the transition from |y) = [1, —i]”
to |¢) = [i, 1]7. Both vectors have norm +/2.
We can take their inner product first:

(@ly) = [0, 1[1, —=i]" = =2i. (4.37)
and then divide it by the product of their norm:
—2i
— = = 4.38
NG (4.38)
Equivalently, we can first normalize them, and then take their product:
11 - 1771 =il
—¢|—w>= [— —} [— —} = —i. (4.39)
<«/§ V2 V2 V21LV2 V2
The result is, of course, the same. We can concisely indicate it as
o) a0
o) 1)l
O

Let us pause one moment, and see where we are.

B We have learned to associate a vector space to a quantum system. The dimension
of this space reflects the amount of basic states of the system.

m States can be superposed, by adding their representing vectors.

B A state is left unchanged if its representing vector is multiplied by a complex
scalar.

m The state space has a geometry, given by its inner product. This geometry has
a physical meaning;: it tells us the likelihood for a given state to transition into
another one after being measured. States that are orthogonal to one another are
mutually exclusive.

4.2 Observables

Before moving on to the next sections, we invite you to write a simple computer
simulation.

Programming Drill 4.1.1 Write a program that simulates the first quantum system de-
scribed in this section. The user should be able to specify how many points the particle
can occupy (warning: keep the max number low, or you will fairly quickly run out of
memory). The user will also specify a ket state vector by assigning its amplitudes.
The program, when asked the likelihood of finding the particle at a given point, will
perform the calculations described in Example 4.1.1. If the user enters two kets, the
system will calculate the probability of transitioning from the first ket to the second,
after an observation has been made.

4.2 OBSERVABLES

Physics is, by and large, about observations: physical quantities like mass, momen-
tum, velocity, etc., make sense only insofar as they can be observed in a quantifiable
way. We can think of a physical system as specified by a double list: on the one hand,
its state space, i.e., the collection of all the states it can possibly be found in (see the
previous section), and on the other hand, the set of its observables, i.e., the physical
quantities that can be observed in each state of the state space.

Each observable may be thought of as a specific question we pose to the system:
if the system is currently in some given state |y}, which values can we possibly ob-
serve?

In our quantum dictionary, we need to introduce the mathematical analog of an
observable:

Postulate 4.2.1 To each physical observable there corresponds a hermitian operator.

Let us see what this postulate actually entails. First of all, an observable is a linear
operator, which means that it maps states to states. If we apply the observable Q2 to
the state vector |¢/), the resulting state is now Q|y).

Example 4.2.1 Let |¢) = [-1, —1 —i]” be the start state in the two-dimensional
spin state space. Now, let

-1 —i
Q= . (4.41)
i1

This matrix acts as an operator on C2. Therefore, we can apply it to |/). The result is
the vector Q|y) = [i, —1 — 2i]”. Observe that |1/) and Q) are not scalar multiples
of one another, and thus they do not represent the same state: 2 has modified the
state of the system. O

Secondly, as we already know from Chapter 2, the eigenvalues of a hermitian
operator are all real. The physical meaning of this fact is established by the follow-
ing:

115

116

Basic Quantum Theory

Postulate 4.2.2 The eigenvalues of a hermitian operator Q2 associated with a physical
observable are the only possible values observable can take as a result of measuring
it on any given state. Furthermore, the eigenvectors of Q form a basis for the state
space.

As we have said before, observables can be thought of as legitimate questions we
can pose to quantum systems. Each question admits a set of answers: the eigenvalues
of the observable. We learn in the next section how to compute the likelihood that
one specific answer will come up out of the entire set.

Before delving into the subtler properties of observables, let us mention some
real-life ones. In the case of the first quantum system of Section 4.1, namely, the
particle on the line, the most obvious observable is position. As we have stated
already, each observable represents a specific question we pose to the quantum
system. Position asks: “Where can the particle be found?” Which hermitian op-
erator corresponds to position? We are going to tell first how it acts on the basic
states:

P(ly)) = P(Ixi)) = xilx:). (4.42)

In plain words, P acts as multiplication by position.
As the basic states form a basis, we can extend Equation 4.42 to arbitrary states:

P (Z Ci|xi>) = inci|xi>~ (4.43)

Here is the matrix representation of the operator in the standard basis:

xo 0 ... 0
0 x; 0 O

p=| . (4.44)
(0 0+ x|

P is simply the diagonal matrix whose entries are the x; coordinates. Observe that
P is trivially hermitian, its eigenvalues are the x; values, and its normalized eigen-
vectors are precisely the basic state vectors that we met at the beginning of Section
4.1: |XQ), |x1), ey |X,,_1).

Exercise 4.2.1 Verify the last statement. [Hint: Do it by brute force (start with
a generic vector, multiply it by the position operator, and assume that the result
vector is a scalar multiple of the original one. Conclude that it must be one of the
basis vectors).] |

There is a second natural question one may ask of our particle: What is your
velocity? Actually, physicists ask a slightly different question: “What is your mo-
mentum?” where momentum is defined classically as velocity times mass. There is a
quantum analog of this question, which is represented in our discrete model by the

4.2 Observables

following operator (recall that §x is the increment of distance on the line):

I+ 50—)
8x '

In words, momentum is, up to the constant —i * A, the rate of change of the state
vector from one point to the next.'”

The constant # (pronounced h bar) that we have just met is a universal constant
in quantum mechanics, known as the reduced Planck constant. Although it plays a
fundamental role in modern physics (it is one of the universal constants of nature),
for the purpose of the present discussion it can be safely ignored.

As it turns out, position and momentum are the most elementary questions we
can ask of the particle: there are of course many more, such as energy, angular mo-
mentum, etc., but these two are in a sense the basic building blocks (most observ-
ables can be expressed in terms of position and momentum). We shall meet again
position and momentum at the end of the next section.

Our second example of observables comes from the spin system. The typical
question we might pose to such a system is: given a specific direction in space, in
which way is the particle spinning? We can, for instance, ask: is the particle spinning
up or down in the z direction? Left or right in the x direction? In or out in the y
direction? The three spin operators corresponding to these questions are

M(y)) = —i %

(4.45)

0 1
(4.46)
1

0
Each of the three spin operators comes equipped with its orthonormal basis. We

have already met up and down, the eigenbasis of §,. Sy has eigenbasis {| <), | =)},
or left and right, and S, has {| /), |)}, or in and out.

Exercise 4.2.2 Consider a particle in initial spin up. Apply Sy to it and determine
the probability that the resulting state is still spin up. |

Reader Tip. The remainder of this section, although quite relevant for general
quantum theory, is tangential to quantum computation, and can thus be safely
skipped in a first reading (just take a look at the summary at the end of this sec-
tion and proceed to Section 4.3). Q

We are going to make some calculations with the operators described before in
a little while; first, though, we need a few additional facts on observables and their
associated hermitian matrices.

Up to this point, the collection of physical observables on a given quantum sys-
tem is just a set. However, even an informal acquaintance with elementary physics

10 The calculus-enabled reader would have easily recognized a one-step discrete version of the derivative
in the momentum. Indeed, if éx goes to zero, momentum is precisely the derivative with respect to
position of ¥) times the scalar —i * f.

117

118

Basic Quantum Theory

teaches us that observable quantities can be added, multiplied, or multiplied by a
scalar number to form other meaningful physical quantities, i.e., other examples
of observables abound: think of momentum as mass times velocity, work as force
times displacement, total energy of a particle in motion as the sum of its kinetic
and potential energies, etc. We are thus naturally concerned with the following is-
sue: to what extent can we manipulate quantum observables to obtain yet other
observables?

Let us start our investigation from the first step, namely, multiplying an observ-
able by a number (i.e., a scalar). There is no problem with carrying out this op-
eration: indeed, if we scalar multiply a hermitian matrix by a real scalar (i.e., we
multiply all its entries), the result is still hermitian.

Exercise 4.2.3 Verify the last statement. |

Exercise 4.2.4 What about complex scalars? Try to find a hermitian matrix and a
complex number such that their product fails to be hermitian. |

Let us make the next move. What about the addition of two hermitian matrices?
Suppose we are looking at two physical observables, represented respectively by
the hermitians ©; and €,. Again, no problem: their sum Q; + 2, is the observable
whose representative is the sum of the corresponding hermitian operators, 21 + €2,
which happens to be hermitian.

Exercise 4.2.5 Check that the sum of two arbitrary hermitian matrices is hermitian.
[|

From these two facts it ensues that the set of hermitian matrices of fixed dimen-
sion forms a real (but not a complex) vector space.

How about products? It is quite tempting to conclude that the product of two
physical quantities, represented respectively by the hermitians ; and €2, is an ob-
servable whose representative is the product (i.e., matrix composition) of €; and
;. There are two substantial difficulties here. First, the order in which operators
are applied to state vectors matters. Why? Well, simply because matrix multipli-
cation, unlike multiplication of ordinary numbers or functions, is not, in general, a
commutative operation.

Example 4.2.2 Let
1 —1—i 0 -1

Ql = and Qz = . (447)
-1+ 1 -1 2

Their product 2, x 5 is equal to

1—i -1
Qz * Q] = s (448)
—34+2i 3+

4.2 Observables

whereas Q2 x Q; is equal to

1+i -3-2
Qx Q= . (4.49)
-1 3—i
O
Exercise 4.2.6 Let Q; = |:1 li:| and 2, = ? Z]. Verity that both are hermitian.
12
Do they commute with respect to multiplication? [|

The second difficulty is just as serious: in general, the product of hermitian op-
erators is not guaranteed to be hermitian. Let us now investigate in a more rigorous
way what it takes for the product of two hermitian operators to be hermitian. Notice
that we have

Q1+ Q¢ V) = (¢, 1Y) = (¢, o x 1Y), (4.50)

where the first equality comes from the fact that ; is hermitian and the second
equality comes from the fact that €2, is hermitian. For ©; = 2, to be hermitian, we
would need that

(Q1* 0, ¥) = (¢, Q1 *x D). (4.51)
This in turn implies
Ql * Qz = Qz * Ql, (452)

or equivalently, the operator
[Ql, Qz] = Ql * 92 — Qz * Ql (453)

must be the zero operator (i.e., the operator that sends every vector to the zero
vector).

The operator [, Q;] is so important that it deserves its own name; it is called
the commutator of ©; and ;. We have just learned that if the commutator is zero
then the product (in whichever order) is hermitian. We are going to meet the com-
mutator again in a little while. Meanwhile, let us familiarize ourselves with the com-
mutator through a simple and very important example.

Example 4.2.3 Let us calculate the commutators of the three spin matrices (we
shall deliberately ignore the constant factor §)5

0 1[0 —i 0 —i|]|0 1 1 0

(S, S,] = - =2i . (454)
1 0|]i 0 i 0|10 0 -1
0 —i||1 o 1 0 |lo —i 01

[Sy. S:] = — =2i . (4.55)
i 0]lo -1 0 —1||i 0 10

119

120

Basic Quantum Theory

1 0|01 0 1][1 0 0 —i
[Se. 8] = - =2i . (4.56)
0 —1{[1 0 1 oflo0 -1 i 0

A bit more concisely,
[Se, Sy] =2iS,, [S), S]] =2iS,, [S,] =2iS,. (4.57)

As we have just seen, none of the commutators are zero. The spin operators do not
commute with each other. O

Now it is your turn.

Exercise 4.2.7 Explicitly calculate the commutator of the operators of Exam-
ple 4.2.2. |

Note: A moment’s thought shows that the product of a hermitian operator with itself
always commutes and so does the exponent operation. Therefore, given a single
hermitian €2, we automatically get the entire algebra of polynomials over €, i.e., all
operators of the form

Q=g+ Q+ a4+, QL (4.58)
All such operators commute with one another.

Exercise 4.2.8 Show that the commutator of two hermitian matrices is a hermitian
matrix. [|

If the commutator of two hermitian operators is zero, or equivalently, the two
operators commute, there is no difficulty in assigning their product (in whatever
order) as the mathematical equivalent of the physical product of their associated
observables. But what about the other cases, when the two operators do not com-
mute? The Heisenberg’s uncertainty principle, which we are going to meet at the
end of this section, will provide an answer.

There is yet another aspect of the association between observables and hermitian
operators that can provide substantial physical insight: we know from Chapter 2 that
hermitian operators are precisely those operators that behave well with respect to
the inner product, i.e.,

(Qp, V) = (¢, Q) (4.59)

for each pair |), |@).

From this fact, it immediately derives that (Qv,) is a real number for each
|}, which we shall denote as (£2), (the subscript points to the fact that this quantity
depends on the state vector). We can attach a physical meaning to the number (£2),,.

Postulate 4.2.3 (), is the expected value of observing Q repeatedly on the same
state .

4.2 Observables

This postulate states the following: suppose that
A0y My ey Apt (4.60)

is the list of eigenvalues of Q. Let us prepare our quantum system so that it is in
state |) and let us observe the value of Q. We are going to obtain one or another
of the aforementioned eigenvalues. Now, let us start all over again many times, say,
n times, and let us keep track of what was observed each time. At the end of our
experiment, the eigenvalue A; has been seen p; times, where 0 < p; < n (in statistical
jargon, its frequency is p;/n). Now perform the calculation

P1 n

@+)\1x— -~-+)»n,1Xpn71.
n n

)»0 X (461)

If n is sufficiently large, this number (known in statistics as the estimated expected
value of ©) will be very close to (Q, /).

Example 4.2.4 Let us calculate the expected value of the position operator on an
arbitrary normalized state vector: let

[¥) = colxo) +crlxr) + - -+ cp1lXn-1) (4.62)
be our state vector and

(P,) = leol” x xo + lerl® x x4+ leno1 > X Xt (4.63)
where

lcol? + le1l* + -+ + lean | = 1. (4.64)

In particular, if |4) happens to be just |x;), we simply get x; (verify it!). In other
words, the expected value of position on any of its eigenvectors |x;) is the corre-
sponding position x; on the line. O

r —i
Example 4.2.5 Let |y) = [@ gl] and Q = |:1 R]

Let us calculate Q(|v/)):

S

_| V2 . (4.65)

Q) = 1=l s
14 3 l

SRS

i 2

The bra associated with Q|y) is [\/_, —%ﬁi]. The scalar product (Qy|y), i.e.,
the average value of Q2 on |y), is thus equal to

T
[ﬁ, —gﬁi] [%5 %] —25. (4.66)
O
Exercise 4.2.9 Repeat the steps of the previous example where

) = £ -4) (4.67)

121

122 Basic Quantum Theory

and

3 1+42i
Q= . (4.68)
1-2i -1

We now know that the result of observing Q2 repeatedly on a given state will be
a certain frequency distribution on the set of its eigenvalues. In plain words, sooner
or later we will encounter all its eigenvalues, some more frequently and some less.
In the next section we compute the probability that a given eigenvalue of Q will
actually be observed on a given state. For now, we may be interested in know-
ing the spread of the distribution around its expected value, i.e., the variance of
the distribution. A small variance will tell us that most of the eigenvalues are very
close to the mean, whereas a large variance means just the opposite. We can define
the variance in our framework in a few stages. First, we introduce the hermitian
operator

Ap(Q) =Q— ()1 (4.69)

(1 is the identity operator). The operator A, (2) acts on a generic vector |¢) in the
following fashion:

Ay (R2)l9) = Q(l9) — (()y)le). (4.70)

So Ay () just subtracts the mean from the result of 2. What then is the mean of
Ay () itself on the normalized state |/)? A simple calculation shows that it is pre-
cisely zero: A, (2) is the demeaned version of €.

Exercise 4.2.10 Verify the last statement. |

We can now define the variance of Q at |) as the expectation value of Ay (L)
squared (i.e., the operator Ay (2) composed with itself):

Vary (Q) = ((Ay () * (Ay(2)))y- (4.71)

Admittedly, the definition looks at first sight rather obscure, although it is not so
bad if we remember the usual definition of the variance of a random variable X as

Var(X) = E(X - p)) = E(X— pn)(X -). (4.72)

where E is the expected value function. The best course is to turn to a simple exam-
ple to get a concrete feel for it.

4.2 Observables

Example 4.2.6 Let Q be a 2-by-2 diagonal matrix with real entries:

M0
Q=

0 X1
and let

i
() = . (4.73)

(&)

Let us denote by u (pronounced “mu”) the mean of € on |v/).

)\1 0 122 0)\1 — K 0
Ay(Q) =Q—(Q)y = - _
0)\2 0 122 0)\2 — MK
(4.74)
Now we calculate Ay (2) x Ay (2):
A — 0 A= 0
Aw(Q) * Aw(Q) =
0 Ay — 1 0 Ay — 1
A — p)? 0
_ | e . (4.75)
0 (A2 — p)?
Finally, we can compute the variance:
(M — p)? 0 ¢l
(@)@ @y =)
0 —w? ||
= le1? x (M —) + leal® x (k2 —). (4.76)

We are now able to see that if both A; and A, are very close to u, the term in the
equation will be close to zero. Conversely, if either of the two eigenvalues is far from
w (it is immaterial whether above or below it, because we are taking squares), the
variance will be a big real number. Conclusion: the variance does indeed inform us
about the spread of the eigenvalues around their mean. d

Our reader may still be a bit unsatisfied after this example: after all, what it
shows is that the definition of variance given above works as it should in the case of
diagonal matrices. Actually, it is a known fact that all hermitian matrices can be di-
agonalized by switching to a basis of eigenvectors, so the example is comprehensive
enough to legitimize our definition.

123

124 Basic Quantum Theory

Example 4.2.7 Let us calculate the variance of the operator described in Exam-
ple 4.2.5:

1 —i 25 0 -15 —i
Ay(Q)=Q2—(Q)y = — = . (4.97)
i 2 0 25 i —-0.5

We now compute Ay () x Ay (Q):

15 —i 15 —i 325 2
Aw(Q) * Aw(Q) = —
i —05 i —05 —2i 125
(4.78)
Hence the variance is
325 2 V2
(A @By @ = | £ fi | T | Zozs.
~2i 125 || £
(4.79)
O

Exercise 4.2.11 Calculate the variance of the position operator. Show that the vari-
ance of position on any of its eigenvectors is zero. |

Exercise 4.2.12 Calculate the variance of S; on a generic spin state. Show that the
variance of S, reaches a maximum on the state %E(l BENENN [|

Note: The variance of the same hermitian varies from state to state: In particular, on
an eigenvector of the operator the variance is zero, and the expected value is just the
corresponding eigenvalue: we can say that an observable is sharp on its eigenvectors
(no ambiguity on the outcome).

Exercise 4.2.13 Prove the preceding statement. (Hint: Work out some examples
first.) |

We have built all the machinery needed to introduce a fundamental theorem of
quantum mechanics, known as Heisenberg’s uncertainty principle. Let us begin with
two observables, represented by the two hermitians €2; and ,, and a given state,
say, [¥). We can compute the variance of ©; and €2, on |y), obtaining Var, (1) and
Var,(£2). Do these two quantities relate in any way, and if so, how?

Let us see what the question actually means. We have two observables, and our
hope would be to simultaneously minimize their variances, thereby getting a sharp
outcome for both. If there were no correlation in the variances, we could expect a
very sharp measure of both observables on some convenient state (such as a com-
mon eigenvector, if any such existed). Alas, this is not the case, as shown by the
following.

4.2 Observables

Theorem 4.2.1 (Heisenberg’s Uncertainty Principle). The product of the variances
of two arbitrary hermitian operators on a given state is always greater than or equal
to one-fourth the square of the expected value of their commutator. In formulas:

1
Vary (@) x Vary (@) = 71([Q1, @Dy . (4.80)

As promised, we have found our commutator once again. Heisenberg’s principle
tells us that the commutator measures how good a simultaneous measure of two
observables can possibly be. In particular, if the commutator happens to be zero (or
equivalently, if the observables commute), there is no limit (at least in principle) to
our accuracy. In quantum mechanics, however, there are plenty of operators that do
not commute: in fact, we have seen that the directional spin operators provide one
such example.

Exercise 4.2.14 Use the calculation of the commutator in Example 4.2.3 and
Heisenberg’s principle to give an estimate of how accurate a simultaneous obser-
vation of spin in the z and x directions can be. |

Another typical example, related to our first quantum system, is given by the
pair position-momentum, which we have also met in the last section. So far |y) for
the particle on the line has been described in terms of its position eigenbasis, i.e., the
collection {|x;)}. |¢/) can be written in many other orthonormal bases, corresponding
to different observables. One of those is the momentum eigenbasis. This basis comes
up when we think of |¢) as a wave (a bit like a wave hovering over the line). We
can thus decompose it into its basic frequencies, just as we can resolve a sound into
its basic pure tones. These pure tones are precisely the elements of the momentum
eigenbasis.

The image of |) in the position basis is as different as it can possibly be from
the one associated with the momentum eigenbasis. The position eigenbasis is made
of “peaks,” i.e., vectors that are zero everywhere except at a point (Dirac’s deltas,
in math jargon). Therefore, |¢) is decomposed into a weighted sum of peaks. The
momentum eigenbasis, on the other hand, is made of sinusoids, whose position is
totally undetermined.

The commutator of the position—-momentum pair captures well this inherent dis-
similarity: it is not zero, and therefore our hope to keep the comforting traditional
picture of a particle as a tiny billiard ball moving around in space is dashed. If we
can pin down the particle position at a given point in time (i.e., if the variance of
its position operator is very small), we are at a loss as to its momentum (i.e., the
variance of its momentum operator is very big), and vice versa.

Let us sum up:

m Observables are represented by hermitian operators. The result of an observa-
tion is always an eigenvalue of the hermitian.

m The expression (y|Q2|y) represents the expected value of observing 2 on |).

m Observables in general do not commute. This means that the order of observa-
tion matters. Moreover, if the commutator of two observables is not zero, there
is an intrinsic limit to our capability of measuring their values simultaneously.

125

126

Basic Quantum Theory

Programming Drill 4.2.1 Continue your simulation of a quantum system by adding
observables to the picture: the user will input a square matrix of the appropriate size,
and a ket vector. The program will verify that the matrix is hermitian, and if so, it will
calculate the mean value and the variance of the observable on the given state.

4.3 MEASURING

The act of carrying out an observation on a given physical system is called measur-
ing. Just as a single observable represents a specific question posed to the system,
measuring is the process consisting of asking a specific question and receiving a defi-
nite answer.

In classical physics, we implicitly assumed that

B the act of measuring would leave the system in whatever state it already was, at
least in principle; and

m the result of a measurement on a well-defined state is predictable, i.e., if we know
the state with absolute certainty, we can anticipate the value of the observable
on that state.

Both these assumptions proved wrong, as research in the subatomic scale has
repeatedly shown: systems do get perturbed and modified as a result of measuring
them. Furthermore, only the probability of observing specific values can be calcu-
lated: measurement is inherently a nondeterministic process.

Let us briefly recapitulate what we know: an observable can only assume one of
its eigenvalues as the result of an observation. So far though, nothing tells us how
frequently we are going to see a specific eigenvalue, say, A. Moreover, our frame-
work does not tell us yet what happens to the state vector if A is actually observed.
We need an additional postulate to handle concrete measures:

Postulate 4.3.1 Let Q2 be an observable and |yr) be a state. If the result of measur-
ing Q2 is the eigenvalue A, the state after measurement will always be an eigenvector
corresponding to).

Example 4.3.1 Let us go back to Example 4.2.1: It is easy to check that the eigen-
values of Q are A; = —/2 and A, = +/2 and the corresponding normalized eigenvec-
tors are |e;) = [—0.923i, —0.382]7 and |e;) = [—0.382i, 0.923]7.

Now, let us suppose that after an observation of Q on |y) = %[1, 1]7, the actual
value observed is A;. The system has “collapsed” from [¢/) to |e;). O

Exercise 4.3.1 Find all the possible states the system described in Exercise 4.2.2
can transition into after a measurement has been carried out. |

What is the probability that a normalized start state |y) will transition to a spe-
cific eigenvector, say, |e)? We must go back to what we said in Section 4.1: the prob-
ability of the transition to the eigenvector is given by the square of the inner product
of the two states: |{e|)|>. This expression has a simple meaning: it is the projection
of |¢) along |e).

4.3 Measuring

We are ready for a new insight into the real meaning of (€2), of the last section:
first, let us recall that the normalized eigenvectors of Q constitute an orthogonal
basis of the state space. Therefore, we can express |¢) as a linear combination in
this basis:

[¥) = coleo) + ciler) + -+ + co_tlen—1). (4.81)
Now, let us compute the mean:
(Q)y = (QU. ¥) = |col*ho + lc1PA1 + -+ + [ca1[*Anot. (4.82)

(Verify this identity!)
As we can now see, (), is precisely the mean value of the probability distri-
bution

(20, Po)s (A1, p1), -+ s Aty Pu—1), (4.83)

where each p; is the square of the amplitude of the collapse into the corresponding
eigenvector.

Example 4.3.2 Let us go back to Example 4.3.1 and calculate the probabilities that
our state vector will fall into one of the two eigenvectors:

pr=1le)? =05 and p=|(¥le)]> =0.5. (4.84)
Now, let us compute the mean value of the distribution:
P1L XA+ pr XA = 0.00, (485)

which is precisely the value we obtained by directly calculating (y|2|v).
O

Exercise 4.3.2 Perform the same calculations as in the last example, using Exer-
cise 4.3.1. Then draw the probability distribution of the eigenvalues as in the previ-
ous example. [|

Note: As a result of the foregoing discussion, an important fact emerges. Suppose
we ask a specific question (i.e., we choose an observable) and perform a measure-
ment once. We get an answer, say, A, and the system transitions to the corresponding
eigenvector. Now, let us ask the same question immediately thereafter. What is go-
ing to happen? The system will give exactly the same answer, and stay where it is. All
right, you may say. But, what about changing the question? The following example
will clarify matters.

Example 4.3.3 Until now we have dealt with measurements relative to only one
observable. What if there were more than one observable involved? With each ob-
servable there is a different set of eigenvectors the system can possibly collapse to
after a measurement has taken place. As it turns out, the answers we get will depend
on which order we pose our questions, i.e., which observable we measure first.
There is an intriguing experiment that one can easily perform in order to see
some of these ideas in action (and have some fun in the process). Suppose you shoot
a beam of light. Light is also a wave, and like all waves it vibrates during its journey
(think of sea waves). There are two possibilities: either it vibrates along all possible

127

128

Basic Quantum Theory

=

Figure 4.5. Light par-
tially passing through
one polarization
sheet.

planes orthogonal to its line of propagation, or it does it only in a specific one. In
the second case we say that light is polarized.'! What kind of questions we can ask
concerning polarization? We can set a specific plane, and ask: is light vibrating along
this plane or is orthogonal?

For our experiment we need thin plastic semitransparent polarization sheets
(they are fairly easy to obtain). Polarization sheets do two things: once you orient
them in a specific direction, they measure the polarization of light in the orthogo-
nal basis corresponding to that direction (let us call it the vertical-horizontal basis),
and then filter out those photons that collapsed to one of the elements of the basis
(Figure 4.5).

What if we had two sheets? If the two sheets were oriented in the same direc-
tion, there would be no difference whatsoever (why? because we are asking the
same question; the photon will give once more the same exact answer). However,
if we rotated the second sheet by 90°, then no light would pass through both sheets
(Figure 4.6).

Placing the sheets orthogonal to each other ensures that the permitted half that
passes through the left sheet is filtered out by the right sheet.

What happens if we add a third sheet? Placing a third sheet to the left or to
the right of the other two sheets does not have any effect whatsoever. No light was
permitted before and none will be allowed through the additional sheet. However,
placing the third sheet in-between the other two at an angle, say, 45°, does have a
remarkable effect (Figure 4.7).

Light will pass through all the three sheets! How can this be? Let us see what is
going on here. The left sheet measures all the light relative to the up—down basis.
The polarized light in the vertical polarization state that goes through is then con-
sidered to be a superposition with respect to the diagonal middle sheet measuring
basis. The middle sheet recollapses the permitted half, filters some, and passes some
through. But what is passed through is now in a diagonal polarization state. When
this light passes through the right sheet, it is again in a superposition of the vertical—
horizontal basis, and so it must collapse once more. Notice that only one-eighth of
the original light passes through all three sheets. |

1 Polarization is a familiar phenomenon: fancy sun glasses are made on the basis of light polarization.

4.4 Dynamics

Figure 4.6. No light passing
through two polarization sheets
at orthogonal angels.

A brief summary is in order:

B The end state of the measurement of an observable is always one of its eigen-
vectors.
m The probability for an initial state to collapse into an eigenvector of the observ-

able is given by the length squared of the projection.
B When we measure several observables, the order of measurements matters.

We have come a long way. We now have three main ingredients to cook up quantum
dishes. We need one more, dynamics.

Programming Drill 4.3.1 Next step in the simulation: when the user enters an observ-
able and a state vector, the program will return the list of eigenvalues of the observable,
the mean value of the observable on the state, and the probability that the state will
transition to each one of the eigenstates. Optional: plot the corresponding probability

distribution.

4.4 DYNAMICS

Thus far, we have been concerned with static quantum systems, i.e., systems that do
not evolve over time. To be sure, changes could still occur as a result of one or pos-
sibly many measurements, but the system itself was not time-dependent. In reality,
of course, quantum systems do evolve over time, and we thus need to add a new
hue to the canvas namely quantum dynamics. Just as hermitian operators represent
physical observables, unitary operators introduce dynamics in the quantum arena.

NN

L

L

’:|||||||r:'?!|||||-

R
B
\

e

Figure 4.7. Light partially passing through
three polarization sheets.

129

130

Basic Quantum Theory

Postulate 4.4.1 The evolution of a quantum system (that is not a measurement) is
given by a unitary operator or transformation.

That is, if U is a unitary matrix that represents a unitary operator and |y (¢))
represents a state of the system at time ¢, then

[y (1 4+ 1)) = Uy (1) (4.86)

will represent the system at time ¢ 4 1.

An important feature of unitary transformations is that they are closed under
composition and inverse, i.e., the product of two arbitrary unitary matrices is uni-
tary, and the inverse of a unitary transformation is also unitary. Finally, there is a
multiplicative identity, namely, the identity operator itself (which is trivially uni-
tary). In math jargon, one says that the set of unitary transformations constitutes a
group of transformations with respect to composition.

Exercise 4.4.1 Verify that

Uy = and U, = (4.87)

S
NS

o)

are unitary matrices. Multiply them and verify that their product is also unitary. W

We are now going to see how dynamics is determined by unitary transforma-
tions: assume we have a rule, 4, that associates with each instant of time

t07 tla t2’ M) t}’l—] (488)

a unitary matrix

Uto], Wt1], - ., U[tnr]. (4.89)

Let us start with an initial state vector |). We can apply U[#] to |¢), then apply
$[#] to the result, and so forth. We will obtain a sequence of state vectors

Ulto]lyr), (4.90)
U JUz0]lv), (4.91)
(4.92)

Ultn1]U[ta2] - - - Ult0] 1) (4.93)

4.4 Dynamics

Such a sequence is called the orbit'” of |1/) under the action of 4[¢;] at the time clicks
t07t1’ M) tn—]-

Ufto] Ul] Uftr]
[¥) Ulto]1yr) Uler U0] 1) Ut JU[e1] t0] 1)
U[to]f Uy]t U]
Ulty—1]U[tn—2] - - - Ulto]1¥). (4.94)

Observe that one can always go back, just like running a movie backward, simply
by applying the inverses of U[#], U[#], ..., U[t,—1] in reverse order: evolution of a
quantum system is symmetric with respect to time.

We can now preview how a quantum computation will look. A quantum com-
puter shall be placed into an initial state |y), and we shall then apply a sequence of
unitary operators to the state. When we are done, we will measure the output and
get a final state. The next chapters are largely devoted to working out these ideas in
detail.

Here is an exercise for you on dynamics:

Exercise 4.4.2 Go back to Example 3.3.2 (quantum billiard ball), keep the same
initial state vector [1, 0, 0, 0]”, but change the unitary map to

_ X X -

0 5 5 0

0 0 L
v2 v2 (4.95)

1 i

7z 0 0 5

1 1
L0 5 5 0

Determine the state of the system after three time steps. What is the chance of
the quantum ball to be found at point 3? |

The reader may wonder how the sequence $[¢;] of unitary transformations is
actually selected in real-life quantum mechanics. In other words, given a concrete
quantum system, how is its dynamics determined? How does the system change?
The answer lies in an equation known as the Schrodinger equation:'”

(e +580) = () _

21
) 2y o). (4.96)

12" A small warning: one commonly thinks of an orbit as closed (a typical example is the orbit of the moon
around the earth). In dynamics, this is not always the case: an orbit can be open or closed.

13 The version shown here is actually the discretized version of the original equation, which is a differen-
tial equation obtained from the above by letting ¢ become infinitesimal. It is this discretized version
(or variants thereof) that is usually employed in computer simulation of quantum systems.

131

132

Basic Quantum Theory

A complete discussion of this fundamental equation goes beyond the scope of
this introductory chapter. However, without going into technical details, we can at
least convey its spirit. Classical mechanics taught physicists that the global energy
of an isolated system is preserved throughout its evolution.'* Energy is an observ-
able, and therefore for a concrete quantum system it is possible to write down a
hermitian matrix representing it (this expression will of course vary from system to
system). This observable is called the hamiltonian of the system, indicated by H in
Equation (4.96).

The Schrodinger equation states that the rate of variation of the state vector
| (t)) with respect to time at the instant ¢ is equal (up to the scalar factor 27”) to
| (¢)) multiplied by the operator —i x H. By solving the equation with some initial
conditions one is able to determine the evolution of the system over time.

Time for a small recap:

B Quantum dynamics is given by unitary transformations.

m Unitary transformations are invertible; thus, all closed system dynamics are re-
versible in time (as long as no measurement is involved).

B The concrete dynamics is given by the Schrédinger equation, which determines
the evolution of a quantum system whenever its hamiltonian is specified.

Programming Drill 4.4.1 Add dynamics to your computer simulation of the particle
on a grid: the user should input a number of time steps n, and a corresponding se-
quence of unitary matrices U, of the appropriate size. The program will then compute
the state vector after the entire sequence U, has been applied.

4.5 ASSEMBLING QUANTUM SYSTEMS

The opening section of this chapter described a simple quantum system: a parti-
cle moving in a confined one-dimensional grid (the set of points {xg, x1, ..., X;,_1}).
Now, let us suppose that we are dealing with two particles confined to the grid. We
shall make the following assumption: the points on the grid that can be occupied by
the first particle will be {xo, x1, ..., x,—1}. The second particle can be at the points

{y07 y]7 AR Ym—l}
X0 X1 <o Xn—-1 Yo N s Ym—1

(4.97)

Can we lift the description we already have to this new setup? Yes. The details will
keep us busy in this section.

Our answer will not be confined to the aforementioned system. Instead, it will
provide us with a quantum version of a building block game, i.e., a way of assem-
bling more complex quantum systems starting from simpler ones. This procedure

14 For instance, a stone dropped from a height falls down in such a way that its kinetic energy plus its
potential energy plus energy dissipated from attrition is constant.

4.5 Assembling Quantum Systems

lies at the very core of modern quantum physics: it enables physicists to model
multiparticle quantum systems.”

We need one last expansion of our quantum dictionary: assembling quantum
systems means tensoring the state space of their constituents.

Postulate 4.5.1 Assume we have two independent quantum systems Q and Q', rep-
resented respectively by the vector spaces V and V'. The quantum system obtained by
merging Q and Q' will have the tensor product V ® V' as a state space.

Notice that the postulate above enables us to assemble as many systems as we like.
The tensor product of vector spaces is associative, so we can progressively build
larger and larger systems:

Vo®Vi®: - ® V. (498)

Let us go back to our example. To begin with, there are n x m possible basic
states:

|x0) ® |0), meaning the first particle is at xo and the second particle at yy.
|X0) ® |y1), meaning the first particle is at xo and second particle at y;.

|x0) ® |ym—1), meaning the first particle is at xy and the second particle at y,,_1.
|x1) ® |Y0), meaning the first particle is at x; and the second particle at yy.

|x;) ® |y;), meaning the first particle is at x; and the second particle at y;.

[Xn-1) ® |Ym—1), meaning the first particle is at x,,_; and the second particle at
Ym—1-

Now, let us write the generic state vector as a superposition of the basic states:

[¥) = coolxo) @ Iyo) + -+ cijlx) @ly;) + -+ 4 comtm—11%n—1) ® |Yim—1),
(4.99)

which is a vector in the (n x m)-dimensional complex space C"*™.
The quantum amplitude |c; ;| squared will give us the probability of finding the
two particles at positions x; and y;, respectively, as shown by the following example.

Example 4.5.1 Assume n =2 and m = 2 in the above. We are thus dealing with
the state space C* whose standard basis is

{Ix0) ® [y0). |X0) ® [y1), |x1) & [yo), [x1) ® [y1)}. (4.100)

15 By thinking of fields such as the electromagnetic field as systems composed of infinitely many particles,
this procedure makes field theory amenable to the quantum approach.

133

134

Basic Quantum Theory

Now, let us consider the state vector for the two-particle system given by

[¥) = ilx0) ® |yo) + (1 = i)lxo) ® [y1) +2Ix1) ® [xo) + (=1 = D) |x1) ® |x1).
(4.101)
What is the probability of finding the first particle at location x; and the second one

at y;? We look at the last amplitude in the list given before, and use the same recipe
as in the one-particle system:

| —1—if
P+ =i+ 2P +]-1-i)

p(x1, y1) = =0.2222. (4.102)

O

Exercise 4.5.1 Redo the steps of the last example when n =m =4 and ¢y =
Cot=-=c33=1+i. u

The same machinery can be applied to any other quantum system. For instance,
it is instructive to generalize our spin example of Section 4.1 to a system where many
particles are involved. You can try yourself.

Exercise 4.5.2 Write down the generic state vector for the system of two particles
with spin. Generalize it to a system with » particles (this is important: it will be the
physical realization for quantum registers!).]

Now that we are a bit familiar with quantum assemblage, we are ready for the fi-
nal puzzling surprise of quantum mechanics: entanglement. Entanglement will force
us to abandon one last comforting faith, namely, that assembled complex systems
can be understood completely in terms of their constituents.

The basic states of the assembled system are just the tensor product of basic
states of its constituents. It would be nice if each generic state vector could be rewrit-
ten as the tensor product of two states, one coming from the first quantum subsystem
and the other one from the second. It turns out that this is not true, as is easily shown
by this example.

Example 4.5.2 Let us work on the simplest nontrivial two-particle system: each
particle is allowed only two points. Consider the state

[¥) = 1x0) ® |yo0) + lx1) ® Iy1). (4.103)
In order to clarify what is left out, we might write this as
1) = 1lx0) ® |yo) + Olx0) ® |y1) + 0lx1) ® [yo) + 11x1) ® [y1). (4.104)

Let us see if we can write |y/) as the tensor product of two states coming from the
two subsystems. Any vector representing the first particle on the line can be written
as

colxo) + c1lx1). (4.105)

4.5 Assembling Quantum Systems

Similarly, any vector representing the second particle on the line can be written as
colyo) + ¢i1yn)- (4.106)

Therefore, if |) came from the tensor product of the two subsystems, we would
have

(colxo) + c1lx1)) ® (cplyo) + i ly1)) = cocplxo) ® |yo) + cocylxo) @ |y1)
+c1cplxn) ® |yo) + cicilx) ® |y1). (4.107)

For our [¢) in Equation (4.104) this would imply that cyc;, = cic] =1 and coc} =
ci¢, = 0. However, these equations have no solution. We conclude that |/) cannot
be rewritten as a tensor product.

Let us go back to |¢) and see what it physically means. What would happen if
we measured the first particle? A quick calculation will show that the first particle
has a 50-50 chance of being found at the position xj or at x;. So, what if it is, in fact,
found in position x,? Because the term |xp) ® |y;) has a 0 coefficient, we know that
there is no chance that the second particle will be found in position y;. We must then
conclude that the second particle can only be found in position y,. Similarly, if the
first particle is found in position x;, then the second particle must be in position y;.
Notice that the situation is perfectly symmetrical with respect to the two particles,
i.e., it would be the same if we measured the second one first. The individual states
of the two particles are intimately related to one another, or entangled. The amazing
side of this story is that the x;’s can be light years away from the y;’s. Regardless of
their actual distance in space, a measurement’s outcome for one particle will always
determine the measurement’s outcome for the other one.

The state |y) is in sharp contrast to other states like

[¥") = 1lxo) ® Iyo) + 1Ix0) ® [y1) + 11x1) ® [y0) + Lx1) & [y1). (4.108)

Here, finding the first particle at a particular position does not provide any clue as
to where the second particle will be found (check it!). O

States that can be broken into the tensor product of states from the constituent
subsystems (like |1/')) are called separable states, whereas states that are unbreak-
able (like |¢)) are referred to as entangled states.

Exercise 4.5.3 Assume the same scenario as in Example 4.5.2 and let
16) = 1%0) ® [y1) + [x1) ®). (4.109)

Is this state separable? [|

A clear physical case of entanglement is in order. We must revert to spin. Just
as there are laws of conservation of momentum, angular momentum, energy-mass,
and other physical properties, so too there is a law of conservation of total spin of
a quantum system. This means that in an isolated system the total amount of spin
must stay the same. Let us fix a specific direction, say, the vertical one (z axis), and
the corresponding spin basis, up and down. Consider the case of a quantum system,

135

136 Basic Quantum Theory

D= =D
=75 =

Figure 4.8. Two possible scenarios of a composite system where
the total spin is zero.

such as a composite particle, whose total spin is zero. This particle might split up at
some point in time into two other particles that do have spin (Figure 4.8).

The spin states of the two particles will now be entangled. The law of conserva-
tion of spin stipulates that because we began with a system of total spin zero, the
sum of the spins of the two particles must cancel each other out. This amounts to
the fact that if we measure the spin of the left particle along the z axis and we find it
in state | 1.) (where the subscript is to describe which particle we are dealing with),
then it must be that the spin of the particle on the right will be | | g). Similarly, if the
state of the left particle is | |), then the spin of the right particle must be | 1 z).

We can describe this within our notation. In terms of vector spaces, the basis
that describes the left particle is 5;, = {1, | 1} and the basis that describes the right
particle is Bgr = {1 &, | r}. The basis elements of the entire system are

Te®tr 1T0®Ir L@tk L@ IRl (4.110)
In such a vector space, our entangled particles can be described by

[ML ® IR+ 11L& TR)
7 ,

similar to Equation (4.104). As we said before, the combinations | 1, ® 1) and
| I ® | r) cannot occur because of the law of conservation of spin. When one mea-
sures the left particle and it collapses to the state | 1) then instantaneously the right
particle will collapse to the state | | r), even if the right particle is millions of light-
years away.

How will entanglement arise in the tale that we are telling? We find in Chapter 6
that it plays a central role in algorithm design. It is also used extensively in Chapter 9
while discussing cryptography (Section 9.4) and teleportation (Section 9.5). Entan-
glement makes a final appearance in Chapter 11, in connection with decoherence.

(4.111)

4.5 Assembling Quantum Systems

What have we learned?

B We can use the tensor product to build complex quantum systems out of simpler
ones.

B The new system cannot be analyzed simply in terms of states belonging to its
subsystems. An entire set of new states has been created, which cannot be re-
solved into their constituents.

Programming Drill 4.5.1 Expand the simulation of the last sections by letting the
user choose the number of particles.

References: There are many elementary introductions to quantum mechanics that
are very readable. Here is a list of some of them: Chen (2003), Gillespie (1974),
Martin (1982), Polkinghorne (2002), and White (1966).

Special mention must be made of the classic introduction by P.A.M. Dirac
(1982). Seventy years after its first publication, it remains a classic that is worth
reading.

For a more advanced and modern presentation see, e.g., Volume III of Feynman
(1963), Hannabuss (1997), Sakurai (1994), or Sudbery (1986).

For a short history of the early development of quantum mechanics, see Gamow
(1985).

137

138

5

Architecture

From the intrinsic evidence of his creation, the Great Archi-
tect of the Universe now begins to appear as a pure mathe-
matician.

Sir James Jeans, Mysterious Universe

Now that we have the mathematical and physical preliminaries under our belt, we
can move on to the nuts and bolts of quantum computing. At the heart of a clas-
sical computer is the notion of a bit and at the heart of quantum computer is a
generalization of the concept of a bit called a qubit, which shall be discussed in
Section 5.1. In Section 5.2, classical (logical) gates, which manipulate bits, are pre-
sented from a new and different perspective. From this angle, it is easy to formulate
the notion of quantum gates, which manipulate qubits. As mentioned in Chapters
3 and 4, the evolution of a quantum system is reversible, i.e., manipulations that
can be done must also be able to be undone. This “undoing” translates into re-
versible gates, which are discussed in Section 5.3. We move on to quantum gates in
Section 5.4.

Reader Tip. Discussion of the actual physical implementation of qubits and quan-
tum gates is dealt with in Chapter 11. Q

5.1 BITS AND QUBITS
What is a bit?

Definition 5.1.1 A bit is a unit of information describing a two-dimensional classical
system.

5.1 Bits and Qubits

There are many examples of bits:

B A bit is electricity traveling through a circuit or not (or high and low).
m A bitis a way of denoting “true” or “false.”
B A bit is a switch turned on or off.

> |

All these examples are saying the same thing: a bit is a way of describing a system
whose set of states is of size 2. We usually write these two possible states as 0 and 1,
or Fand T, etc.

As we have become adept at matrices, let us use them as a way of representing
a bit. We shall represent 0 — or, better, the state |0) — as a 2-by-1 matrix with a 1 in
the 0’s row and a 0 in the 1’s row:

01
|0>=1 ol (5.1)

We shall represent a 1, or state |1), as

00
m=_1, (5.2)

Because these are two different representations (indeed orthogonal), we have an
honest-to-goodness bit. We explore how to manipulate these bits in Section 5.2.

A bit can be either in state |0) or in state |1), which was sufficient for the classical
world. Either electricity is running through a circuit or it is not. Either a proposition
is true or it is false. Either a switch is on or it is off. But either/or is not sufficient in
the quantum world. In that world, there are situations where we are in one state and
in the other simultaneously. In the realm of the quantum, there are systems where a
switch is both on and off at the same time. One quantum system can be in state |0)
and in state |1) simultaneously. Hence we are led to the definition of a qubit:

Definition 5.1.2 A quantum bit or a qubit is a unit of information describing a two-
dimensional quantum system.

We shall represent a qubit as a 2-by-1 matrix with complex numbers

0 Co
o). o

where |cg|? + |c1]|? = 1. Notice that a classical bit is a special type of qubit. |co|? is to
be interpreted as the probability that after measuring the qubit, it will be found in
state |0). |c1|? is to be interpreted as the probability that after measuring the qubit it
will be found in state |1). Whenever we measure a qubit, it automatically becomes a
bit. So we shall never “see” a general qubit. Nevertheless, they do exist and are the

139

140 Architecture

main characters in our tale. We might visualize this “collapsing” of a qubit to a bit
as

[1.0]"

lcol?

[CO,C]]T (5.4)

le1?

[0.1]"

It is easy to see that the bits |0) and |1) are the canonical basis of C2. Thus, any
qubit can be written as

Co 1 0
=cp- +cr- = ¢0|0) + c1]1). (5.5)
1 0 1

3+2i

Exercise 5.1.1 Write V = |: i| as a sum of |0) and |1).]

—2i

Following the normalization procedures that we learned in Chapter 4 on
page 109, any nonzero element of C? can be converted into a qubit.

Example 5.1.1 The vector

543
V= (5.6)
6i

has norm

5430
V=V = |15-3i-6i]| | = V34136 = V70, (5.7)

6i

So V describes the same physical state as the qubit

543i . .
1% == 543i 6i
= VO =20y). (5.8)
V70 X V70 V70

After measuring the qubit %, the probability of it being found in state |0) is 3—3 and
the probability of it being found in state |1) is %. O

5.1 Bits and Qubits

Exercise 5.1.2 Normalize V = |:;51 31':%]. |
A= 13

. . . 1 .
Let us look at several ways of denoting different qubits. % |:1:| can be written as

1y = . (5.9)

Similarly, %[11] can be written as

1
7 1 1 0) —11)
V2= —0) - —=1) = : 5.10
=L ﬁ') ﬁ' > V2 .10
V2
It is important to realize that
0) +11) _ 1) +10)
= . 5.11
V2 V2 G0
1
These are both ways of denoting [#:| In contrast,
V2
0y —|1 1)—10
0 -1 10 -10) 5.12)

V2 V2

1

The left state is the vector [.] and the right state is the vector |:1ﬁ } However,
7

i

Sl

the two states are related:

0) —11) _ (_1)I1) —10)
V2 V2
How are qubits to be implemented? In Chapter 11, several different methods

are explored. We simply state some examples of implementations for the time
being:

(5.13)

B An electron might be in one of two different orbits around the nucleus of an
atom (ground state and excited state).

m A photon might be in one of two polarized states.

B A subatomic particle might have one of two spin directions.

There will be enough quantum indeterminacy and quantum superposition effects
within all these systems to represent a qubit.

141

142

Architecture

Computers with only one bit of storage are not very interesting. Similarly, we
will need quantum devices with more than one qubit. Consider a byte, or eight bits.
A typical byte might be

01101011. (5.14)

If we were to follow the preceding method of describing bits, we would represent
the bits as follows:

: : : , : : : . (5.15)

We learned previously that in order to combine quantum systems, one should use
the tensor product; hence, we can describe the byte in Equation (5.14) as

0)®NHe1)®0)®I[1)®|0)® (1) ®[1). (5.16)
As a qubit, this is an element of
CelCeCeCeCCeC*gC. (5.17)

This vector space may be denoted as (C?)®3. This is a complex vector space of di-
mension 28 = 256. Because there is essentially only one complex vector space of this
dimension, this vector space is isomorphic to C?*.

We can describe our byte in yet another way: as a 28 = 256 row vector

00000000 [0]

00000001 | 0

01101010

01101011 | 1 |. (5.18)
01101100 | 0

11111110 | 0

11111111 | 0 |

Exercise 5.1.3 Express the three bits 101 or |1) ® |0) ® |1) € C?> ® C?> ® C? as a vec-
tor in (C?)®3 = C8. Do the same for 011 and 111. [|

This is fine for the classical world. However, for the quantum world, in order
to permit superposition, a generalization is needed: every state of an eight-qubit

5.1 Bits and Qubits

system can be written as

00000000 | co
00000001 | c;

01101010 C106
01101011 | c7 |, (5.19)
01101100 C108

11111110 C254
11111111 | 55 |

where 212550 lc;|?> = 1. Eight qubits together is called a qubyte.

In the classical world, it is necessary to indicate the state of each bit of a byte.
This amounts to writing eight bits. In the quantum world, a state of eight qubits is
given by writing 256 complex numbers. As we stated in Section 3.4, this exponen-
tial growth was one of the reasons researchers started giving thought to the notion
of quantum computing. If one wanted to emulate a quantum computer with a 64-
qubit register, one would need to store 2% = 18, 446, 744, 073, 709, 551, 616 com-
plex numbers. This is way beyond our current storage capability.

Let us practice writing two qubits in ket notation. A qubit pair can be written as
@) or [0®1), (5.20)

which means that the first qubit is in state |0) and the second qubit is in state |1).
Because the tensor product is understood, we might also denote these qubits as
|0)]1), |0, 1), or |01). Yet another way to look at these two qubits as the 4-by-1 matrix
is

00 [0
01 |1
521
10 [0 (521)
1|0
Exercise 5.1.4 What vector corresponds to the state 3|01) + 2|11)? [|
Example 5.1.2 The qubit corresponding to
1
! 0 (5.22)
V3|1 '
1

143

144 Architecture

can be written as

1 1 1 100) — [10) +[11)

|00y — [10) + [11) = . (5.23)
V3 V3 V3 V3
O
A general state of a two-qubit system can be written as
[¥) = 0,0100) + €0,1101) + ¢1,0[10) + c1,1/11). (5.24)
The tensor product of two states is not commutative:
D®1)=0)® 1) =0,1) = |01) # [10) = |1,0) = |1) ® |0) = |1 ® 0).
(5.25)

The left ket describes the state in which the first qubit is in state 0 and the second
qubit is in state 1. The right ket indicates that first qubit is in state 1 and the second
qubit is in state 0.

Let us briefly revisit the notion of entanglement again. If the system is in the
state

I11) +100) 1 1
B 1) + —00), 5.26
7 ﬁl Hﬁ') (5.26)

then that means that the the two qubits are entangled. That is, if we measure the
first qubit and it is found in state |1) then we automatically know that the state of
the second qubit is |1). Similarly, if we measure the first qubit and find it in state |0)
then we know the second qubit is also in state |0).

5.2 CLASSICAL GATES

Classical logical gates are ways of manipulating bits. Bits enter and exit logical gates.
We will need ways of manipulating qubits and will study classical gates from the
point of view of matrices. As stated in Section 5.1, we represent n input bits as a
2"-by-1 matrix and m output bits as a 2”-by-1 matrix. How should we represent
our logical gates? When one multiplies a 2”*-by-2" matrix with a 2"-by-1 matrix, the
result is a 2”*-by-1 matrix. In symbols:

(2™-by-2") » (2"-by-1) = (2"-by-1). (5.27)

So bits will be represented by column vectors and logic gates by matrices.
Let us try a simple example. Consider the NOT gate.

5.2 Classical Gates

NOT takes as input one bit, or a 2-by-1 matrix, and outputs one bit, or a 2-by-1
matrix. NOT of |0) equals |1) and NOT of |1) equals |0). Consider the matrix

01
NOT = . (5.28)
1 0
This matrix satisfies
01 1 0 01 0 1
= and = , (5.29)
1 0 0 1 10 1 0

which is exactly what we want.
What about the other gates? Consider the AND gate. The AND gate is different
from the NOT gate because AND accepts two bits and outputs one bit.

Because there are two inputs and one output, we will need a 2!-by-2? matrix.
Consider the matrix

1110
AND = . (5.30)

00 01

This matrix satisfies

0
111 0((0 0
= . (5.31)
0 0 01 0 1
1
We can write this as
AND|11) = |1). (5.32)
In contrast, consider another 4-by-1 matrix:
0
1110 1 1
= . (5.33)
0 0 01 0 0
0

We can write this as

AND|01) = |0). (5.34)

145

146 Architecture

Exercise 5.2.1 Calculate AND|10). |

What would happen if we put an arbitrary 4-by-1 matrix to the right of AND?

3.5
1110]]| 2 55
= (5.35)
0001 0 —4.1
—4.1

This is clearly nonsense. We are allowed only to multiply these classical gates with
vectors that represent classical states, i.e., column matrices with a single 1 entry and
all other entries 0. In the classical world, the bits are in only one state at a time and
are described by such vectors. Only later, when we delve into quantum gates, will
we have more room (and more fun).

The OR gate

can be represented by the matrix

1 0 00
OR = . (5.36)
01 11
Exercise 5.2.2 Show that this matrix performs the OR operation. |
The NAND gate

is of special importance because every logical gate can be composed of NAND gates.
Let us try to determine which matrix would correspond to NAND. One way is to
sit down and consider for which of the four possible input states of two bits (00, 01,
10, 11) does NAND output a 1 (answer: 00, 01, 10), and in which states does NAND
output a 0 (answer: 11). From this, we realize that NAND can be written as

00 01 10 11
0|0 0 0 1
NAND = . .
1 |: 1 1 1 0] (5:37)

Notice that the column names correspond to the inputs and the row names corre-
spond to the outputs. 1 in the jth column and ith row means that on entry j the
matrix/gate will output i.

5.2 Classical Gates

There is, however, another way in which one can determine the NAND gate.
The NAND gate is really the AND gate followed by the NOT gate.

In other words, we can perform the NAND operation by first performing the AND
operation and then the NOT operation. In terms of matrices we can write this as

0 1 1110 0 0 01
NOT x AND = * = = NAND.
10 0 0 01 1110
(5.38)
Exercise 5.2.3 Find a matrix that corresponds to NOR. |

This way of thinking of NAND brings to light a general situation. When we per-
form a computation, we often have to carry out one operation followed by another.

A B , (5.39)

We call this procedure performing sequential operations. If matrix A corre-
sponds to performing an operation and matrix B corresponds to performing another
operation, then the matrix B x A corresponds to performing the operation sequen-
tially. Notice that B« A looks like the reverse of our picture which has, from left to
right, A and then B. Do not be alarmed by this. The reason for this is because we
read from left to right and hence we depict processes as flowing from left to right.
We could have easily drawn the above figure as

< B A <~ (5.40)

with no confusion.! We shall follow the convention that computation flows from left
to right and omit the heads of the arrows. And so a computation of A followed by
B shall be denoted

— A B — (5.41)

L If the text were written in Arabic or Hebrew, this problem would not even arise.

147

148

Architecture

Let us be formal with the number of inputs and the number of outputs. If A is
an operation with m input bits and » output bits, then we shall draw this as

S R S (5.42)

The matrix A will be of size 2"-by-2". Say, B takes the n outputs of A as input
and outputs p bits, i.e.,

" A " B = (5.43)

then Bisrepresented by a 27-by-2" matrix B, and performing one operation sequen-
tially followed by another operation corresponds to B x A, which is a (2P-by-2") x
(2"-by-2") = (2P-by-2"") matrix.

Besides sequential operations, there are parallel operations as well.

_ A E—

(5.44)

R B —

Here we have A acting on some bits and B on others. This will be represented by
A ® B (see Section 2.7). Let us be exact with the number of inputs and the number
of outputs.

+t— A

(5.45)

’

/n
i B

A will be of size 2"-by-2. B will be of size 2" -by-2"" . Following Equation (2.174)
in Section 2.7, A ® Bis of size 22" = 2" -by-2mm = 2mm’

Exercise 5.2.4 In Exercise 2.7.4, we proved that A ® B= B® A. What does this
fact correspond to in terms of performing parallel operations on different bits? B

Combinations of sequential and parallel operations gates/matrices will be called
circuits. We will, of course, construct some really complicated matrices, but they
will all be decomposable into the sequential and parallel compositions of simple
gates.

Exercise 5.2.5 In Exercise 2.7.9, we proved that for matrices of the appropriate
sizes A, A’, B, and B we have the following equation:

(B B)x(A® A') = (Bx A)® (B » A'). (5.46)

5.2 Classical Gates 149

To what does this correspond in terms of performing different operations on differ-
ent (qu)bits? (Hint: Consider the following figure.)

(5.47)

A/ B/

Example 5.2.1 Let A be an operation that takes n inputs and gives m outputs. Let
B take p < m of these outputs and leave the other m — p outputs alone. B outputs
q bits.

—— o B -

(5.48)

/m—p

A is a 2"-by-2" matrix. B is a 29-by-2?7 matrix. As nothing should be done to the
m — p bits, we might represent this as the 2"~F-by-2"""? identity matrix I,,_,. We
do not draw any gate for the identity matrix. The entire circuit can be represented
by the following matrix:

(B® L_p) * A. (5.49)

O

Example 5.2.2 Consider the circuit.
This is represented by

OR » (NOT ® AND). (5.50)

>

)

150 Architecture
Let us see how the operations look like as matrices. Calculating, we get

01 1110 0 00
NOT @ AND = ® =

1 0 00 01 11100 00O

o

0 0 01

00010000
(5.51)

And so we get

0000T1T1T10
OR * (NOT ® AND) = . (5.52)

1111000

—_

O

Let us see if we can formulate DeMorgan’s laws in terms of matrices. One of
DeMorgan’s laws states that —~(—P /\ —Q) = P\/ Q. Here is a pictorial representa-

>

In terms of matrices this corresponds to

NOT « AND (NOT ® NOT) = OR. (5.53)

First, let us calculate the tensor product:

0 0 01

0 1 01 0010
NOT ® NOT = ® = (5.54)

10 1 0 0100

10 00

This DeMorgan’s law corresponds to the following identity of matrices:
0 0 01
0 1 1110 0 01 10 00

* * = . (5.55)

0
1 0 0 0 01 0100 01 11
0

1 00

5.3 Reversible Gates

Exercise 5.2.6 Multiply out these matrices and confirm the identity. [|

Exercise 5.2.7 Formulate the other DeMorgan’s law

-(-P\/-Q)=P/\ Q (5.56)

in terms of matrices. |

Exercise 5.2.8 Write the matrix that would correspond to a one-bit adder. A one-
bit adder adds the bits x, y, and ¢ (a carry-bit from an earlier adder) and outputs
the bits z and ¢’ (a carry-bit for the next adder). There are three inputs and two
outputs, so the matrix will be of dimension 22-by-2°. (Hint: Mark the columns as
000, 001, 010, ..., 110, 111, where column, say, 101 correspondstox =1,y =0,¢c =
1. Mark the rows as 00, 01, 10, 11, where row, say, 10, corresponds to z=1, ¢’ = 0.
When x =1, y =0, ¢ = 1, the output should be z=0and ¢’ = 1. So place a 1 in the
row marked 01 and a 0 in all other rows.) |

Exercise 5.2.9 In Exercise 5.2.8, you determined the matrix that corresponds to a
one-bit adder. Check that your results are correct by writing the circuit in terms of
classical gates and then converting the circuit to a big matrix. [|

5.3 REVERSIBLE GATES

Not all the logical gates that we dealt with in Section 5.2 will work in quantum
computers. In the quantum world, all operations that are not measurements are
reversible and are represented by unitary matrices. The AND operation is not re-
versible. Given an output of |0) from AND, one cannot determine if the input was
|00), |01), or |10). So from an output of the AND gate, one cannot determine the
input and hence AND is not reversible. In contrast, the NOT gate and the identity
gates are reversible. In fact, they are their own inverses:

NOT«NOT =1L L1l =1, (5.57)

Reversible gates have a history that predates quantum computing. Our every-
day computers lose energy and generate a tremendous amount of heat. In the 1960s,
Rolf Landauer analyzed computational processes and showed that erasing informa-
tion, as opposed to writing information, is what causes energy loss and heat. This
notion has come to be known as the Landauer’s principle.

In order to gain a real-life intuition as to why erasing information dissipates en-
ergy, consider a tub of water with a wall separating the two sides as in Figure 5.1.

Figure 5.1. Tub with water in no state.

151

152 Architecture

0))

Figure 5.2. Tub with water in state |0) and state |1).

This tub is used as a way of storing a bit of information. If all the water is pushed
to the left then the system is in state |0), and if all the water is pushed to the right
then the system is in state |1), as in Figure 5.2.

What would correspond to erasing information in such a system? If there were a
hole in the wall separating the 0 and 1 regions, then the water could seep out and we
would not know what state the system would be in. One can easily place a turbine
where the water is seeping out (see Figure 5.3) and generate energy. Hence, losing
information means energy is being dissipated.

Notice, also, that writing information is a reversible procedure. If the tub is in no
state and we push all the water to the left and set the water to state |0), all one needs
to do is remove the wall and the water will go into both regions resulting in no state.
This is shown in Figure 5.4. We have reversed the fact that information was written.
In contrast, erasing information is not reversible. Start at state |0), and then remove
the wall that separates the two parts of the tub. That is erasing the information. How
could we return to the original state? There are two possible states to return to, as
in Figure 5.5.

The obvious answer is that we should push all the water back to state |0). But
the only way we know that |0) is the original state is if that information is copied
to the brain. In that case, the system is both the tub and the brain, and we did not
really erase the fact that state |0) was the original state. Our brain was still storing
the information.

Let us reexamine this intuition by considering two people, Alice and Bob. If
Alice writes a letter on an empty blackboard and then Bob walks into the room, he
can then erase the letter that Alice wrote on the board and return the blackboard
into its original pristine state. Thus, writing is reversible. In contrast, if there is a
board with writing on it and Alice erases the board, then when Bob walks into the
room he cannot write what was on the board. Bob does not know what was on the
board before Alice erased it. So Alice’s erasing was not reversible.

Figure 5.3. State |0) dissipating and
creating energy.

5.3 Reversible Gates

I 0) I
Figure 5.4. Reversibility of writing.

We have found that erasing information is an irreversible, energy-dissipating
operation. In the 1970s, Charles H. Bennett continued along these lines of thought.
If erasing information is the only operation that uses energy, then a computer that
is reversible and does not erase would not use any energy. Bennett started working
on reversible circuits and programs.

What examples of reversible gates are there? We have already seen that the
identity gate and NOT gates are reversible. What else is there? Consider the follow-
ing controlled-NOT gate:

|x) |x)

(5.58)
[y)) |x & y)

A
N>

This gate has two inputs and two outputs. The top input is the control bit. It
controls what the output will be. If |x) = |0), then the bottom output of |y) will be
the same as the input. If |[x) = |1), then the bottom output will be the opposite. If we
write the top qubit first and then the bottom qubit, then the controlled-NOT gate
takes |x, y) to |x, x @ y), where @ is the binary exclusive or operation.

[0} %

Figure 5.5. Irreversibility of erasing.

153

154 Architecture

The matrix that corresponds to this reversible gate is

00 01 10 11
60wf1 0 0 O
01,0 1 0 O
1000 0 0 1 (559
1mjo o 1 0

The controlled-NOT gate can be reversed by itself. Consider the following fig-
ure:

|x) |x) |x)

(5.60)
[y)) |x ® y) [x®xdy)

A
J
d
v

State |x, y) goes to |x, x @ y), which further goes to |x, x ® (x @ y)). This last
state is equal to |x, (x @ x) @ y) because @ is associative. Because x @ x is always
equal to 0, this state reduces to the original |x, y).

Exercise 5.3.1 Show that the controlled-NOT gate is its own inverse by multiplying
the corresponding matrix by itself and arriving at the identity matrix. |

An interesting reversible gate is the Toffoli gate:

|x) |x)
[y) [y)
(5.61)
|z) 2@ (x A y))
(\

This is similar to the controlled-NOT gate, but with two controlling bits. The
bottom bit flips only when both of the top two bits are in state |1). We can write this
operation as taking state |x, y, z) to |x, y, z® (x A y)).

Exercise 5.3.2 Show that the Toffoli gate is its own inverse. |

The matrix that corresponds to this gate is

5.3 Reversible Gates

000 001 010 011 100 101 110 111

000
001
010
011
100
101
110
111

1

S O O O o o o

0

S O O O O O

0

S O O O O = O

0

S O O O = O O

0

O O O = O O O

0

SO O = O O O O

0

—_ O O O O o O

0

(5.62)

SO R O O O O O

Example 5.3.1 The NOT gate has no controlling bit, the controlled-NOT gate has
one controlling bit, and the Toffoli gate has two controlling bits. Can we go on with
this? Yes. A gate with three controlling bits can be constructed from three Toffoli

gates as follows:

|x) |x)
[y) [)
|0) |0)
(5.63)
|2) 12)
|w) s lwd (x Ay Az)
O

One reason why the Toffoli gate is interesting is that it is universal. In other
words, with copies of the Toffoli gate, you can make any logical gate. In particu-
lar, you can make a reversible computer using only Toffoli gates. Such a computer
would, in theory, neither use any energy nor give off any heat.

In order to see that the Toffoli gate is universal, we will show that it can be used
to make both the AND and NOT gates. The AND gate is obtained by setting the

155

156 Architecture

bottom |z) input to |0). The bottom output will then be |x A y).

|x) |x)
[y) [y)
(5.64)
10) [x A y)
D

The NOT gate is obtained by setting the top two inputs to |1). The bottom output
willbe (1 A1) @ z) =1 ® 2) = |—2).

1) 1)
11) 1)
(5.65)
|2) [—z)
<

In order to construct all gates, we must also have a way of producing a fanout of
values. In other words, a gate is needed that inputs a value and outputs two of the
same values. This can be obtained by setting |x) to |1) and |z) to |0). This makes the
output |1, y, y).

1) 1)
[y))
(5.66)
10) ly)
Y

Exercise 5.3.3 Construct the NAND with one Toffoli gate. Construct the OR gate
with two Toffoli gates. n

5.3 Reversible Gates

Another interesting reversible gate is the Fredkin gate. The Fredkin gate also
has three inputs and three outputs.

|x) |x)
[y) ly') (5.67)
1z) 1Z')

The top |x) input is the control input. The output is always the same |x). If |x)
is set to |0), then |y’) = |y) and |7} = |z), i.e., the values stay the same. If, on the
other hand, the control |x) is set to |1), then the outputs are reversed: |y’) = |z) and
|Z) = |y). In short, |0, y, z) = [0, y, z) and |1, y, 2) — |1, z, y).

Exercise 5.3.4 Show that the Fredkin gate is its own inverse. [|

The matrix that corresponds to the Fredkin gate is

000 001 010 011 100 101 110 111

0W[1 0 0 0 0 0 0 0]

0L{ 0 1 0 0 0 0 0

00| 0 0 1 0 0 0 0 0

ot 0 0 0 1 0 0 0 0

[0 0 0 0 1 0 0 0 (5.68)
010 0 0 0 0 0 1 0

mjo o o0 0 0 1 0 0

mj o o o0 0 0 0 0 1 |

The Fredkin gate is also universal. By setting |y) to |0), we get the AND gate as
follows:

|x) x)

|0) |x A z)

(5.69)

|z) [(=x) A 2)

157

158 Architecture

The NOT gate and the fanout gate can be obtained by setting |y) to |1) and |z)
to |0). This gives us

x) . [x)
) ~x)

(5.70)
0 [x)

So both the Toffoli and the Fredkin gates are universal. Not only are both re-
versible gates; a glance at their matrices indicates that they are also unitary. In the
next section, we look at other unitary gates.

5.4 QUANTUM GATES

Definition 5.4.1 A quantum gate is simply an operator that acts on qubits. Such
operators will be represented by unitary matrices.

We have already worked with some quantum gates such as the identity operator I,
the Hadamard gate H, the NOT gate, the controlled-NOT gate, the Toffoli gate,
and the Fredkin gate. What else is there?

Let us look at some other quantum gates. The following three matrices are called
Pauli matrices and are very important:

XY= Y= . zZ= . (5.71)

They occur everywhere in quantum mechanics and quantum computing.” Note that
the X matrix is nothing more than our NOT matrix. Other important matrices that
will be used are

1 0 1 0
S= and T = . (5.72)

0 i 0 /4
Exercise 5.4.1 Show that each of these matrices are unitary. |

Exercise 5.4.2 Show the action of each of these matrices on an arbitrary qubit
[co, c1]”. [|

2 Sometimes the notation oy, oy, and o, is used for these matrices.

5.4 Quantum Gates

Exercise 5.4.3 These operations are intimately related to each other. Prove the
following relationships between the operations:

() X2=Y>=2722=1,

(i) H=1(x+2),
Gii) X = HZH,

(iv) Z= HXH,

(v) —1Y = HYH,

(vi) S=T?
(vii) —1Y = XYX. .

There are still other quantum gates. Let us consider a one-qubit quantum gate
with an interesting name. The gate is called the square root of NOT and is denoted
+NOT. The matrix representation of this gate is

Nor=_|' 7! (5.73)
-5, | .

The first thing to notice is that this gate is not its own inverse, that is,

VNOT # NOT . (5.74)

In order to understand why this gate has such a strange name, let us multiply vVNOT
by itself:

VNOT # vNOT = (vNOT)? = o -1 (5.75)
1 0

which is very similar to the NOT gate. Let us put the qubits |0) and |1) through
+/NOT gate twice. We get

r T
10y = [1,0]” %%} — [0,1]7 = 1) (5.76)
and
r T
1) =[0,1]" _\%%] > [-1,0]" = —1]0). (5.77)

Remembering that |0) and —1|0) both represent the same state, we are confident in
saying that the square of ~/NOT performs the same operation as the NOT gate, and
hence the name.

There is one other gate we have not discussed: the measurement operation. This
is not unitary or, in general, even reversible. This operation is usually performed at
the end of a computation when we want to measure qubits (and find bits). We shall
denote it as

- (5.78)

159

160

Architecture

There is a beautiful geometric way of representing one-qubit states and op-
erations. Remember from Chapter 1, page 18, that for a given complex number
¢ = x + yi whose modulus is 1, there is a nice way of visualizing c¢ as an arrow of
length 1 from the origin to the circle of radius 1.

P =cxc=(x+yi)x(x—yi)=x>+y*=1. (5.79)

In other words, every complex number of radius 1 can be identified by the angle ¢
that the vector makes with the positive x axis.

There is an analogous representation of a qubit as an arrow from the origin to a
three-dimensional sphere. Let us see how it works. A generic qubit is of the form

¥) = col0) + el1), (5.80)

where |co|> + |c1|? = 1. Although at first sight there are four real numbers involved
in the qubit given in Equation (5.80), it turns out that there are only two actual
degrees of freedom to the three-dimensional ball (as latitude and longitude on the
Earth). Let us rewrite the qubit in Equation (5.80) in polar form:

co=roe'” (5.81)
and

c=rie?, (5.82)
and so Equation (5.80) can be rewritten as

[yr) = roe'®|0) 4 ry €?1[1). (5.83)

There are still four real parameters: rg, r1, ¢g, ¢1. However, a quantum physical state
does not change if we multiply its corresponding vector by an arbitrary complex
number (of norm 1, see Chapter 4, page 109). We can therefore obtain an equivalent
expression for the qubit in Equation (5.80), where the amplitude for |0) is real, by
“killing” its phase:

CPY) = e (g €010) + 11 @1) = r0[0) + ry €M), (5.84)

We now have only three real parameters, namely, rg, 7, and ¢ = ¢ — ¢o. But we
can do better: using the fact that

1=lcol? + le1)? = ro e + [r1 €12 = [ro* 1> 4 |11 P e/ ? |2, (5.85)
we get that

We can rename them as
ro=-cos(d) and r; =sin(0). (5.87)
Summing up, the qubit in Equation (5.80) is now in the canonical representation
[Y) = cos(9)|0) + €' sin(9)|1), (5.88)

with only two real parameters remaining.

5.4 Quantum Gates

Figure 5.6. Bloch sphere.

What is the range of the two angles 6 and ¢? We invite you to show that 0 < ¢ <
2r and 0 <6 < % are enough to cover all possible qubits.

Exercise 5.4.4 Prove that every qubit in the canonical representation given in
Equation (5.88) with # > 7 is equivalent to another one where 6 lies in the first
quadrant of the plane. (Hint: Use a bit of trigonometry and change ¢ according to

your needs.) [|

As only two real numbers are necessary to identify a qubit, we can map it to an
arrow from the origin to the three-dimensional sphere of R? of radius 1 known as
the Bloch sphere, as shown in Figure 5.6.

Every qubit can be represented by two angles that describe such an arrow. The
two angles will correspond to the latitude (9) and the longitude (¢) needed to specify
any position on Earth. The standard parametrization of the unit sphere is

X =cos¢sing, (5.89)
y=singsing, (5.90)
Z=cosf. (5.91)

where 0 < ¢ <2mand 0 <6 < 7.

However, there is a caveat: suppose we use this representation to map our qubit
on the sphere. Then, the points (9, ¢) and (7 — 0, ¢ + 7) represent the same qubit,
up to the factor —1. Conclusion: the parametrization would map the same qubit
twice, on the upper hemisphere and on the lower one. To mitigate this problem, we
simply double the “latitude” to cover the entire sphere at “half speed”:

X = cos ¢ sin 26, (5.92)
y = sin26 sin ¢, (5.93)
Z = cos26. (5.94)

Let us spend a few moments familiarizing ourselves with the Bloch sphere and
its geometry. The north pole corresponds to the state |0) and the south pole corre-
sponds to the state 1). These two points can be taken as the geometrical image of

161

162

Architecture

the good old-fashioned bit. But there are many more qubits out there, and the Bloch
sphere clearly shows it.

The precise meaning of the two angles in Equation (5.88) is the following: ¢ is
the angle that |¢) makes from x along the equator and 6 is half the angle that |y)
makes with the z axis.

When a qubit is measured in the standard basis, it collapses to a bit, or equiv-
alently, to the north or south pole of the Bloch sphere. The probability of which
pole the qubit will collapse to depends exclusively on how high or low the qubit is
pointing, i.e., to its latitude. In particular, if the qubit happens to be on the equator,
there is a 50-50 chance of it collapsing to either |0) or [1). As the angle 6 expresses
the qubit’s latitude, it controls its chance of collapsing north or south.

Exercise 5.4.5 Consider a qubit whose 6 is equal to 7. Change it to 5 and picture
the result. Then compute its likelihood of collapsing to the south pole after being
observed. |

Take an arbitrary arrow and rotate it around the z axis; in the geographical
metaphor, you are changing its longitude:

0)

1)

Notice that the probability of which classical state it will collapse to is not af-
fected. Such a state change is called a phase change. In the representation given in
Equation (5.88), this corresponds to altering the phase parameter e'?.

Before we move on, one last important item: just as |0) and |1) sit on opposite
sides of the sphere, so an arbitrary pair of orthogonal qubits is mapped to antipodal
points of the Bloch sphere.

Exercise 5.4.6 Show that if a qubit has latitude 20 and longitude ¢ on the sphere,
its orthogonal lives in the antipode 7 — 20 and & + ¢. |

That takes care of states of a qubit. What about the dynamics? The Bloch sphere
is interesting in that every unitary 2-by-2 matrix (i.e., a one-qubit operation) can be
visualized as a way of manipulating the sphere. We have seen in Chapter 2, page 66,
that every unitary matrix is an isometry. This means that such a matrix maps qubits
to qubits and the inner product is preserved. Geometrically, this corresponds to a
rotation or an inversion of the Bloch sphere.

The X, Y, and Z Pauli matrices are ways of “flipping” the Bloch sphere 180°
about the x, y, and z axes respectively. Remember that X is nothing more than the

5.4 Quantum Gates

1))

- - . £
7 % ,/ N
Fi \, / \
N

\ \
Y N

Y e

: %

—— o

Figure 5.7. A rotation of the Bloch sphere at y.

; X
K
.

e ,,1
./ //

NOT gate, and takes |0) to |1) and vice versa. But it does more; it takes everything
above the equator to below the equator. The other Pauli matrices work similarly.
Figure 5.7 shows the action of the Y operation.

There are times when we are not interested in performing a total 180° flip but
just want to turn the Bloch sphere 6 degrees along a particular direction.

The first such gates are the phase shift gates. It is defined as

R(0) = b . (5.95)
0 e

This gate performs the following operation on an arbitrary qubit:

o cos(0’) cos(0)
cos(6)|0) + " sin(0)[1) = | > A . (5.96)
€' sin(6’) e’ e sin(6’)

This corresponds to a rotation that leaves the latitude alone and just changes the
longitude. The new state of the qubit will remain unchanged. Only the phase will
change.

There are also times when we want to rotate a particular number of degrees
around the x, y, or z axis. These three matrices will perform the task:

0 -0
0 6 cosg —ising
Ri(0) = cos 51 —isin 5 X = 29 92 , (5.97)
—ising cos3
[0 0
0 0 cos —sin %
R,(0) = cos 51 —isin EY: g 02 , (5.98)
| singy cosy
0 0 02
R.(f) =cos =1 —isin-Z= . (5.99)
2 2 0 i0/2

163

164

Architecture

10)

)

Figure 5.8. A rotation of the Bloch sphere at D.

There are rotations around axes besides the x,y, and z axes. Let D=
(Dx, Dy, D;) be a three-dimensional vector of size 1 from the origin. This determines
an axis of the Bloch sphere around which we can spin (see Figure 5.8). The rotation
matrix is given as

0 0
Rp(6) = cos EI —isin E(DXX_'_ D,Y + D.Z). (5.100)

As we have just seen, the Bloch sphere is a very valuable tool when it comes
to understanding qubits and one-qubit operations. What about n-qubits? It turns
out there is a higher-dimensional analog of the sphere, but coming to grips with
it is not easy. Indeed, it is a current research challenge to develop new ways of
visualizing what happens when we manipulate several qubits at once. Entanglement,
for instance, lies beyond the scope of the Bloch sphere (as it involves at least two
qubits).

There are still other quantum gates. One of the central features of computer
science is an operation that is done only under certain conditions and not under
others. This is equivalent to an IF-THEN statement. If a certain (qu)bit is true,
then a particular operation should be performed, otherwise the operation is not
performed. For every n-qubit unitary operation U, we can create a unitary (n + 1)-
qubit operation controlled-U or “U.

) |x)

(5.101)
/n U /n

This operation will perform the U operation if the top |x) input is a |1) and will
simply perform the identity operation if |x) is |0).
For the simple case of

U= , (5.102)

5.4 Quantum Gates

the controlled-U operation can be seen to be

1 0 0 O

c 01 00
U= . (5.103)

0 0 a b

0 0 ¢ d

This same construction works for matrices larger than 2-by-2.

Exercise 5.4.7 Show that the constructed U works as it should when the top qubit

is set to |0) or set to [1). |
Exercise 5.4.8 Show that if U is unitary, then sois CU. |
Exercise 5.4.9 Show that the Toffoli gate is nothing more than ¢(°NOT). |

It is well known that every logical circuit can be simulated using only the AND
gate and the NOT gate. We say that {AND, NOT} forms a set of universal logical
gates. The NAND gate by itself is also a universal logical gate. We have also seen in
Section 5.3 that both the Toffoli gate and the Fredkin gate are each universal logic
gates. This leads to the obvious question: are there sets of quantum gates that can
simulate all quantum gates? In other words, are there universal quantum gates? The
answer is yes.” One set of universal quantum gates is

{H, “NOT, R (cos—1 @))} , (5.104)

that is, the Hadamard gate, the controlled-NOT gate, and this phase shift gate.
There is also a quantum gate called the Deutsch gate, D(0), depicted as

|x) |x)
ly) [)
(5.105)
1z) 1Z')
R(0)

3 We must clarify what we mean by “simulate.” In the classical world, we say that one circuit Circ sim-
ulates another circuit Circ’ if for any possible inputs, the output for Circ will be the same for Circ'.
Things in the quantum world are a tad more complicated. Because of the probabilistic nature of quan-
tum computation, the outputs of a circuit are always probabilistic. So we have to reformulate what we
mean when we talk about simulate. We shall not worry about this here.

165

166

Architecture

which is very similar to the Toffoli gate. If the inputs |x) and |y) are both |1), then the
phase shift operation R(#) will act on the |z) input. Otherwise, the |z’) will simply be
the same as the |z). When 6 is not a rational multiple of 7, D(0) by itself is a universal
three-qubit quantum gate. In other words, D(6) will be able to mimic every other
quantum gate.

Exercise 5.4.10 Show that the Toffoli gate is nothing more than D(%). |

Throughout the rest of this text, we shall demonstrate many of the operations
that can be performed with quantum gates. However, there are limitations to what
can be done with them. For one thing, every operation must be reversible. Another
limitation is a consequence of the the No-Cloning Theorem. This theorem says that
it is impossible to clone an exact quantum state. In other words, it is impossible to
make a copy of an arbitrary quantum state without first destroying the original. In
“computerese,” this says that we can “cut” and “paste” a quantum state, but we
cannot “copy” and “paste” it. “Move is possible. Copy is impossible.”

What is the difficulty? How would such a cloning operation look? Let V repre-
sent a quantum system. As we intend to clone states in this system, we shall “dou-
ble” this vector space and deal with V ® V. A potential cloning operation would be
a linear map (indeed unitary!)

C:VeV—VaRV, (5.106)

that should take an arbitrary state |x) in the first system and, perhaps, nothing in the
second system and clone |x), i.e.,

C(lx) ® 0) = (Ix) ® |x)). (5.107)

This seems like a harmless enough operation, but is it? If C is a candidate for
cloning, then certainly on the basic states

C(I0)®10)) =10)® 10y and C(1)®[0))=]1®[1). (5.108)
Because C must be linear, we should have that

C((c110) + c2[1)) ® [0)) = ¢1]0) @ [0) + c21) ® [1), (5.109)
for an arbitrary quantum state, i.e., an arbitrary superposition of |0) and |1). Suppose
we start with % Cloning such a state would mean that

c <|x>%|y> @0) _ <|x>j§|y> ° |x>¢+§|y>). (5110)

However, if we insist that C is a quantum operation, then C must be linear,* and
hence, must respect the addition and the scalar multiplication in V® V. If C was

Just a reminder: C being linear means that

Cllg) + 1¥)) = C(l) + C(Iy)) (5.111)

and

Clclg)) = cC(19))- (5.112)

5.4 Quantum Gates

linear, then

c(M @0) e (i(m +13)) ®0) = Lewn+meo

V2 V2 V2
1 1
=;EKMM®0+UO®®)=ZEKﬂn®ON+Cm0®®)
1 (X)®1x) + (y) ®1y)

(0 @ x) +(Iy) @) =

V2 V2 '
(5.113)
But
) +1y) _ %) +1y) (Ix) ® Ix)) + (1y) ® |y))
(7 ® 7);ﬁ 7 . (5.114)

So C is not a linear map,’ and hence is not permitted.
In contrast to cloning, there is no problem transporting arbitrary quantum states
from one system to another. Such a transporting operation would be a linear map

T: VeV — VeV, (5.115)

that should take an arbitrary state |x) in the first system and, say, nothing in the
second system, and transport |x) to the second system, leaving nothing in the first
system, i.e.,

T(lx) ® 0) = (0® |x)). (5.116)

We do not run into the same problem as earlier if we transport a superposition of
states. In detail,

T(% ®0) - T(%uw n |y>>®0>

1 1
ET((M +1y)®0)= ET((IX) ®0)+(ly) ®0))

1 1
E(T(IJO ®0)+T(ly) ®0)) = E((O ®1x)+ (0 ®1y)))

_ 0@ (0 +13) _ o (0 + 1)

V2 V2o
This is exactly what we would expect from a transporting operation.
Fans of Star Trek have long known that when Scotty “beams” Captain Kirk
down from the Starship Enterprise to the planet Zygon, he is transporting Captain
Kirk to Zygon. The Kirk of the Enterprise gets destroyed and only the Zygon Kirk
survives. Captain Kirk is not being cloned. He is being transported. (Would we re-
ally want many copies of Captain Kirk all over the Universe?)

(5.117)

6

5 Cis, however, a legitimate set map.
© In fact, we will show how to transport arbitrary quantum states at the end of Chapter 9.

167

168

Architecture

The reader might see an apparent contradiction in what we have stated. On
the one hand, we have stated that the Toffoli and Fredkin gates can mimic the
fanout gate. The matrices for the Toffoli and Fredkin gates are unitary, and hence
they are quantum gates. On the other hand, the no-cloning theorem says that no
quantum gates can mimic the fanout operation. What is wrong here? Let us care-
fully examine the Fredkin gate. We have seen how this gate performs the cloning
operation

(x,1,0) — (x, —x, x). (5.118)

However, what would happen if the x input was in a superposition of states say,

%, while leaving y = 1 and z = 0. This would correspond to the state

000 001 010 011 100 101 110 111
[o 0 L 0o o o & 0]. (5.119)

Multiplying this state with the Fredkin gate gives us

000 001 010 o011 100 101 110 111 | O 0
000 1 0 0O O O 0 0 07]o 0
01|l 0 1 0 0 0 0 0 0))
00| 0 0 1 0 0 0 0 0 V2 V2
on|l o o o 1 0 0 0 0 0 |0 (5120)
w0 o o0 o0 1 0 0 0 ol 1o ‘
w1 0 o 0O 0 0 0 1 0 1
ml|o o o o o 1 o o]0 7

1
umj o o o o o0 0 o0 1L 0
The resulting state is
1 1,0.1
|07 10> +| 907) (5'121)

7 .
So, whereas on a classical bit x, the Fredkin gate performs the fanout operation,
on a superposition of states the Fredkin gate performs the following very strange

operation:
<|0)+|1> 1 0) . 0,1,0) +11,0,1)
VIR V2 '

This strange operation is not a fanout operation. Thus, the no-cloning theorem
safely stands.

(5.122)

Exercise 5.4.11 Do a similar analysis for the Toffoli gate. Show that the way we set
the Toffoli gate to perform the fanout operation does not clone a superposition of
states. |

5.4 Quantum Gates

References: The basics of qubits and quantum gates can be found in any text-
book on quantum computing. They were first formulated by David Deutsch in 1989
(Deutsch, 1989).

Section 5.2 is simply a reformulation of basic computer architecture in terms of
matrices.

The history of reversible computation can be found in Bennett (1988). The read-
able article (Landauer, 1991) by one of the forefathers of reversible computation is
strongly recommended.

The no-cloning theorem was first proved in Dieks (1982) and Wootters and
Zurek (1982).

169

170

6

Algorithms

Computer Science is no more about computers than astron-
omy is about telescopes.

E.W. Dijkstra

Algorithms are often developed long before the machines they are supposed to
run on. Classical algorithms predate classical computers by millennia, and similarly,
there exist several quantum algorithms before any large-scale quantum computers
have seen the light of day. These algorithms manipulate qubits to solve problems
and, in general, they solve these tasks more efficiently than classical computers.

Rather than describing the quantum algorithms in the chronological order in
which they were discovered, we choose to present them in order of increasing dif-
ficulty. The core ideas of each algorithm are based on previous ones. We start at
tutorial pace, introducing new concepts in a thorough way. Section 6.1 describes
Deutsch’s algorithm that determines a property of functions from {0, 1} to {0, 1}.
In Section 6.2 we generalize this algorithm to the Deutsch—Jozsa algorithm, which
deals with a similar property for functions from {0, 1} to {0, 1}. Simon’s period-
icity algorithm is described in Section 6.3. Here we determine patterns of a func-
tion from {0, 1}" to {0, 1}". Section 6.4 goes through Grover’s search algorithm
that can search an unordered array of size n in /n time as opposed to the usual
n time. The chapter builds up to the ground-breaking Shor’s factoring algorithm
done in Section 6.5. This quantum algorithm can factor numbers in polynomial
time. There are no known classical algorithms that can perform this feat in such
time.

Reader Tip. This chapter may be a bit overwhelming on the first reading. After
reading Section 6.1, the reader can move on to Section 6.2 or Section 6.4. Shor’s
algorithm can safely be read after Section 6.2. Q

6.1 Deutsch’s Algorithm

6.1 DEUTSCH’S ALGORITHM

All quantum algorithms work with the following basic framework:

m The system will start with the qubits in a particular classical state.

B From there the system is put into a superposition of many states.

m This is followed by acting on this superposition with several unitary operations.
B And finally, a measurement of the qubits.

Of course, there will be several variations of this theme. Nevertheless, it will be
helpful to keep this general scheme in mind as we proceed.

The simplest quantum algorithm is Deutsch’s algorithm, which is a nice algo-
rithm that solves a slightly contrived problem. This algorithm is concerned with
functions from the set {0, 1} to the set {0, 1}. There are four such functions that might

be visualized as
Oe o(Oe o0
X< ARG
le ol le—— ol

Call a function f : {0, 1} — {0, 1} balanced if f(0) # f(1),i.e., it is one to one.
In contrast, call a function constant if f(0) = f(1). Of the four functions, two are
balanced and two are constant.

Deutsch’s algorithm solves the following problem: Given a function f:
{0,1} — {0, 1} as a black box, where one can evaluate an input, but cannot “look
inside” and “see” how the function is defined, determine if the function is balanced
or constant.

With a classical computer, one would have to first evaluate f on one input, then
evaluate f on the second input, and finally, compare the outputs. The following
decision tree shows what a classical computer must do:

f(m/ \f(ﬂ)l

ANV ANE

f(0)=0 f(0)=0 1) =1 f)=1
f(1)=0 f)=1 f(1)=0 f)=1

Constant Balanced Balanced Constant

Oe ——— o0 Oe —— o0

le ol le—— 6l

The point is that with a classical computer, f must be evaluated twice. Can we
do better with a quantum computer?

171

172

Algorithms

A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

X f(x)
_— f (6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function

Oe o0

>< 64)

le ol
is equivalent to the matrix
01
0(0 1
. 6.5
1 |:1 0:| (65)
Multiplying state |0) on the right of this matrix would result in state |1), and multi-

plying state |1) on the right of this matrix would result in state |0). The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. [

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uy will be the quantum gate that we shall employ to evaluate
input:

1) 1)

Uy

) -) 6.6)

The top input, |x), will be the qubit value that one wishes to evaluate and the
bottom input, |y), controls the output. The top output will be the same as the input
qubit |x) and the bottom output will be the qubit |y & f(x)), where & is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y) to the state |x, y @ f(x)). If y = 0, this simplifies |x, 0) to |x, 0@ f(x)) =
|x, f(x)). This gate can be seen to be reversible as we may demonstrate by simply

6.1 Deutsch’s Algorithm

looking at the following circuit:

|x) |x) |x)

1) Us ly® f(x))

(6.7)
State |x, y) goes to |x, y @ f(x)), which further goes to
|x, (y 2] f(X)) @ f(X)> = |x, yo (f(X) D f(X))) = |x, y QBO) = |x, y)v (68)

where the first equality is due to the associativity of @ and the second equality holds
because @ is idempotent. From this we see that Uy is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uy. For function (6.4), the corresponding unitary matrix, Uy, is

00 01 10 11
wfo 1 0 O
0o1{1 0 0 O
0/0 0 1 O 69)
1|0 0 0 1

Remember that the top column name corresponds to the input |x, y) and the
left-hand row name corresponds to the outputs |x’, y'). A 1in the xy column and the
x'y’ row means that for input |x, y), the output will be |x’, y').

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. n

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. [|

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0) or in state |1), we shall put the top input in state

10) + 1)

5
which is “half-way” |0) and “half-way” |1). The Hadamard matrix can place a qubit
in such a state.

(6.10)

1 1 1
L Ll L1 o+n
Hoy=| V2 V2 _ vl 6.11)
L _1{]p L V2
NN 7

173

174 Algorithms

The obvious (but not necessarily correct) state to put the bottom input into is state
|0). Thus we have the following quantum circuit:

|0) =
| H]
Uy
10) 6.12
g P
T T T
lpo) l1) l@2)

The |g;) at the bottom of the quantum circuit will be used to describe the state
of the qubits at each time click.
In terms of matrices this circuit corresponds to

Ur(HQ I)(10) ®10)) = Ur(H ® I)(]0, 0)). (6.13)

The tensor product |0, 0) can be written as

001
01 (|0
6.14
10| 0 ()
11| 0
and the entire circuit is then
00 [1
01 (0
U(H® I 6.15
F(H®)10 0 (6.15)
11 (0

We shall carefully examine the states of the system at every time click. The sys-
tem starts in

lgo) = 10) ® 10) =10, 0). (6.16)

We then apply the Hadamard matrix only to the top input — leaving the bottom
input alone — to get

0) + 11 0.0)+ 1,0
|¢1>=[|)+|>}|O>=|) +11,0)

7 5 (6.17)

6.1 Deutsch’s Algorithm 175

After multiplying with Uy, we have

_ 10, FO) +1L (1)

|92) 6.18
2 7 (6.18)
For function (6.4), the state |¢;) would be
00 01 10 11

000 1 0 0700 % 00 [0

011 0 0 o0]o1] 0 01 | 5 | 10,1)+1,0)
2= 39010 0 1 ofw|L| 10 V= V2 (6.19)

7 7 2
1mlo o o 1|1 o 1] o

Exercise 6.1.4 Using the matrices calculated in Exercise 6.1.3, determine the state
|@,) for the other three functions. |

If we measure the top qubit, there will be a 50-50 chance of finding it in state |0)
and a 50-50 chance of finding it in state |1). Similarly, there is no real information to
be gotten by measuring the bottom qubit. So the obvious algorithm does not work.
We need a better trick.

Let us take another stab at solving our problem. Rather than leaving the bottom
qubit in state |0), let us put it in the superposition state:

10) — [1) =
= . 6.20
V2 _L (6:20)
V2

Notice the minus sign. Even though there is a negation, this state is also “half-way”
in state |0) and “half-way” in state |1). This change of phase will help us get our
desired results. We can get to this superposition of states by multiplying state |1)
with the Hadamard matrix. We shall leave the top qubit as an ambiguous |x).

x)
Uy
) Vi 7] 621
|<£)) |‘;rl> |<;Tz>

In terms of matrices, this becomes

Ur(I® H)lx, 1). (6.22)

176

Algorithms

Let us look carefully at how the states of the qubits change.

lpo) = |x, 1).
After the Hadamard matrix, we have

10) — m} _ 0 —x. 1)
V2 VR

lo1) = [x) [

Applying Uy, we get

) = by | LELAZLE TN _ [M} |

V2 V2

where f(x) means the opposite of f(x). Therefore, we have

_w[e] =0,

l2
Ix) [%] i f(x) =1

Remembering that a — b = (—1)(b — a), we might write this as

-1
lp2) = (—1)7|x) ['(”%} :

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

What would happen if we evaluate either the top or the bottom state? Again,
this does not really help us. We do not gain any information if we measure the top
qubit or the bottom qubit. The top qubit will be in state |x) and the bottom qubit

will be either in state |0) or in state |1). We need something more.

Now let us combine both these attempts to actually give Deutsch’s algorithm.
Deutsch’s algorithm works by putting both the top and the bottom qubits into
a superposition. We will also put the results of the top qubit through a Hadamard

matrix.
10) 771 771
] [H] A
Uy
D 771
L]
i i) T
lo) lo1) lp2) lo3) (6.28)
In terms of matrices this becomes

(H® DUf(H® H)(0,1) (6.29)

6.1 Deutsch’s Algorithm 177

or

00 [0
011
He HUf(H® H 6.30
(He NUHS H) | o (6:30)
1[0
At each point of the algorithm the states are as follows:
00 [+
|¢>—['O)+'”H'O>_m]—+'O’O)_'O’”+'1’O>_'l’l>—01 -3
! NG /2 2 10 | +3
1m| -1
(6.32)

We saw from our last attempt at solving this problem that when we put the bottom
qubit into a superposition and then multiply by U, we will be in the superposition

(—1)7) [l())J_Em} _ (6.33)

Now, with |x) in a superposition, we have

_ | D010+ D) 10y - 1)
o) = [= } [= } | (6.34)
For example, if f(0) = 1and f(1) = 0, the top qubit becomes
=D+ DI L [10) = 11)
NG =(-1) [7 } . (6.35)

Exercise 6.1.5 For each of the other three functions from the set {0, 1} to the set
{0, 1}, describe what |¢,) would be. [|

For a general function f, let us look carefully at

(=1)/@10) + (=1)"D). (6.36)
If f is constant, this becomes either

+1(10)y + [1)) or — 1(]0) + |1)) (6.37)

(depending on being constantly 0 or constantly 1).

178

Algorithms
If f is balanced, it becomes either
+1(10) = 1)) or —1(10) — [1)) (6.38)

(depending on which way it is balanced).
Summing up, we have that

(£1) [‘Ol}%‘”] ['0>_'1>] , if fis constant,

72
lg2) = (6.39)
(£1) [‘Ol};”] ['01}2'”] , if fis balanced.
Remembering that the Hadamard matrix is its own inverse that takes —‘05%‘1) to

|0) and takes % to |1), we apply the Hadamard matrix to the top qubit to get

lp3) = V2 (6.40)

(FDIL) [%] , if fis balanced.

(£1)10) [‘OHU] , if fis constant,

For example, if f(0) = 1 and f(1) = 0, then we get

10) — 1)
o0 = -110, | D2, (6:41)
V2
Exercise 6.1.6 For each of the other three functions from the set {0, 1} to the set
{0, 1}, calculate the value of |¢s3). [|

Now, we simply measure the top qubit. If it is in state |0), then we know that fisa
constant function, otherwise it is a balanced function. This was all accomplished with
only one function evaluation as opposed to the two evaluations that the classical
algorithm demands.

Notice that although the +1 tells us even more information, namely, which of
the two balanced functions or two constant functions we have, measurement will
not grant us this information. Upon measuring, if the function is balanced, we will
measure |1) regardless if the state was (—1)|1) or (+1)[1).

The reader might be bothered by the fact that the output of the top qubit of
Uy should not change from being the same as the input. However, the inclusion of
the Hadamard matrices changes things around, as we saw in Section 5.3. This is the
essence of the fact that the top and the bottom qubits are entangled.

Did we perform a magic trick here? Did we gain information that was not there?
Not really. There are four possible functions, and we saw in decision tree (6.2) that
with a classical computer we needed two bits of information to determine which of
the four functions we were given. What we are really doing here is changing around
the information. We might determine which of the four functions is the case by ask-
ing the following two questions: “Is the function balanced or constant?” and “What

6.2 The Deutsch-Jozsa Algorithm 179

is the value of the function on 0?” The answers to these two questions uniquely
describe each of the four functions, as described by the following decision tree:

TN

Balanced Constant

/ \ / \ (6.42)
f(0)=0 f0)y=1 f(0)=0 f0)y=1
f=1 f)=0 f1)=0 =1

The Hadamard matrices are changing the question that we are asking (change
of basis). The intuition behind the Deutsch algorithm is that we are really just per-
forming a change of basis problem as discussed at the end of Section 2.3. We might
rewrite quantum circuit (6.28) as

|0) r-——~"~ -~ ~"—"—"—=="- B

: Uy : (6.43)
| |
| |

We start in the canonical basis. The first Hadamard matrix is used as a change
of basis matrix to go into a balanced superposition of basic states. While in this
noncanonical basis, we evaluate f with the bottom qubit in a superposition. The last
Hadamard matrix is used as a change of basis matrix to revert back to the canonical
basis.

6.2 THE DEUTSCH-JOZSA ALGORITHM

Let us generalize the Deutsch algorithm to other functions. Rather than talking
about functions f : {0, 1} — {0, 1}, let us talk about functions with a larger domain.
Consider functions f: {0, 1} — {0, 1}, which accept a string of n 0’s and 1’s and
outputs a zero or one. The domain might be thought of as any natural number from
0to2" —1.

We shall call a function f : {0, 1} — {0, 1} balanced if exactly half of the inputs
go to 0 (and the other half go to 1). Call a function constant if a// the inputs go to 0
or all the inputs go to 1.

180

Algorithms

Exercise 6.2.1 How many functions are there from {0, 1}" to {0, 1}? How many of
them are balanced? How many of them are constant? |

The Deutsch—Jozsa algorithm solves the following problem: Suppose you are
given a function from {0, 1}" to {0, 1} which you can evaluate but cannot “see” the
way it is defined. Suppose further that you are assured that the function is either
balanced or constant. Determine if the function is balanced or constant. Notice that
when n = 1, this is exactly the problem that the Deutsch algorithm solved.

Classically, this algorithm can be solved by evaluating the function on different
inputs. The best case scenario is when the first two different inputs have different
outputs, which assures us that the function is balanced. In contrast, to be sure that
the function is constant, one must evaluate the function on more than half the pos-
sible inputs. So the worst case scenario requires % + 1 =2""1 41 function evalua-
tions. Can we do better?

In the last section, we solved the problem by entering into a superposition of two
possible input states. In this section, we solve the problem by entering a superposi-
tion of all 2" possible input states.

The function f will be given as a unitary matrix that we shall depict as

X L
— y

U 6.44

1y) ! 1f(x) @ y) (6.44)

with n qubits (denoted as ——#——) as the top input and output. For the rest of
this chapter, a binary string is denoted by a boldface letter. So we write the top input
as |x) = |xpx1 ...x,—1). The bottom entering control qubit is |y). The top output is
|x) which will not be changed by Uy. The bottom output of Uy is the single qubit
|y @ f(x)). Remember that although x is » bits, f(x) is one bit and hence we can use
the binary operation @. It is not hard to see that Uy is its own inverse.

Example 6.2.1 Consider the following balanced function from {0, 1}? to {0, 1}:

00e
Ole o0

(6.45)
10e ol

11e

6.2 The Deutsch-Jozsa Algorithm 181
This function shall be represented by the following 8-by-8 unitary matrix:

00,0 00,1 01,0 01,1 10,0 10,1 11,0 11,1

00,0 [1
00,1 1
01,0 1
01,1 1
4
10,0 1 (6:46)
10,1 1
11,0 1
11,1 | T
(the zeros are omitted for readability). O
Exercise 6.2.2 Consider the balanced function from {0, 1}2 to {0, 1}:
000\
0le —— o0
(6.47)
106 ——> o1
11e
Give the corresponding 8-by-8 unitary matrix. |

Exercise 6.2.3 Consider the function from {0, 1}? to {0, 1} that always outputs a 1.
Give the corresponding 8-by-8 unitary matrix. |

In order to place a single qubit in a superposition of |0) and |1), we used a single
Hadamard matrix. To place n qubits in a superposition, we are going to use the
tensor product of # Hadamard matrices. What does such a tensor product look like?
It will be helpful to do some warm-up exercises. Let us calculate H, H ® H which
we may write as H®?, and H ® H® H = H®*; and look for a pattern. Our goal will
be to find a pattern for H®".

Remember that the Hadamard matrix is defined as

e [1 ! } (6.48)

182

Algorithms

Notice that H[i, j] = %(—1)’” , where i and j are the row and column numbers in
binary and A is the AND operation. We might then write the Hadamard matrix as

0 1
1 0 -1 00 -1 oAl
H= E 1 |:§_1;1/\0 E—l;M :| (6.49)

Notice that we are thinking of 0 and 1 as both Boolean values and numbers that are
exponents. (Remember: (—1)° = 1 and (—1)! = —1.) With this trick in mind we can
then calculate

0 1 0 1
10 (_1)0/\0 (_‘l)OAl 10 (_1)0/\0 (_‘l)OAl
H® = Ho H= ﬁ 1 |:(_1)1/\0 (_1)1/\1i| ® E 1 |:(_1)1A0 (_1)1Ali|
00 01 10 11
00 (_1)UAO * (_1)0A0 (_l)UAO % (_1)0Al (_1)0A1 % (_1)0/\0 (_1)0Al * (_1)UA1
B 1 1 01 (_1)UAU % (_1)1A0 (_1)0A() % (_1)1/\1 (_1)()A1 % (_1)1/\0 (_1)()A1 % (_1)1A1
- E * E 10 (_1)1A0 % (_1)0/\0 (_1)1A0 % (_1)0/\1 (_1)1A1 % (_1)0/\0 (_1)1/\1 % (_1)0Al
11 (_1)1/\0 * (_1)1AU (_1)1A0 * (_1)]A1 (_1)1A1 * (_l)]/\O (_1)1A1 * (_1)1/\]
(6.50)

When we multiply (—1)* by (—1)?, we are not interested in (—1)**>. Rather, we
are interested in the parity of x and y. So we shall not add x and y but take their
exclusive-or (é). This leaves us with
00 01 10 11
00 (_1)0A0®0A0 (_1)0/\0690/\1 (_1)0/\1€BOA0 (_1)0/\1®OA1
101 (_1)0A0®1/\0
T 210
11 (_1)1/\0691/\0

(_1)0A0€B1/\1 (_1)0A1€Bl/\0 (_1)0/\1691A1

H®2

(_l)lAOeBO/\O (_1)1/\0690/\1 (_I)MIEBO/\O (_1)1A1€BO/\1

(_1)1/\0@1/\1 (_1)1/\1631/\0 (_1)1/\1@1/\1
00 01 10 11
001 1 1 1
100(1 -1 1 -1
= 6.51
21011 1 -1 -1 ()
1

11 -1 -1 1

Exercise 6.2.4 Prove by induction that the scalar coefficient of H®" is
L _,%
NG

(6.52)
n

Thus, we have reduced the problem to determining if the exponent of (—1) is odd
or even. The only time that this exponent should change is when the (—1) is in the
lower-right-hand corner of a matrix. When we calculate H®* we will again multiply
each entry of H®? by the appropriate element of H. If we are in the lower-right-hand
corner, i.e., the (1, 1) position, then we should toggle the exponent of (—1).

6.2 The Deutsch-Jozsa Algorithm

The following operation will be helpful. We define

as follows: Given two binary strings of length n, x = xox1x2...x,—1 and y =
Yoyiy2. .. Yn—1, WE say

(X,y) = (XoX1X2 ... Xu—1, YoV1Y2 - - - Yn—1)
=XAY)BXIAY) DB B (Xp—1 A Y1) (6.54)

Basically, this gives the parity of the number of times that both bits are at 1.!
If x and y are binary strings of length 7, then x @y is the pointwise (bitwise)
exclusive-or operation, i.e.,

XOYy=x1®y. 02y,%] Y. (6.55)

The function { ,):{0,1}" x {0, 1} — {0, 1} satisfies the following properties:

(i)

xox,y) =xy e x,y), (6.56)
x,yoy)=(xy &y (6.57)
(if)
(x,0-y) = (x,0") =0. (6.59)
With this notation, it is easy to write H®? as
000 001 010 o1 100 101 110 m
000 [(—1)©00.000 (_1)(000.001) (_1)(®00.010) (_1)(00,011) (—1)(000.100) (__1)(@00.101) (__1){000,110) (_1)(000.111) 7]
001 (71)(1)111A11(m> (71)«11)1,1)111) (7])((101,0111) (71)«)(11‘011) (71)«)01‘100) (71)(01)11(11) (7])(001,11(» (7])(1101,111)

010 | (—1)©10.000 (_1)(010.001) (_1)©10010) (_1)(010,011) (=1)010.100) (_1)(010.10) (_1)0I10110) (_7)010.111)
L o (=1)(11.000) (_1)OLL00) (_{)(01L010) (_1)(01L01) (=1)(11100) (_1)OILI0Y (_{)0ILLO) (_1)01L11)

EIOO (—1)(100.000) (_1)(100,001) (__1)(100,010) (_1)(100.01) (—1)(100.100) (_1)(100.101) (_1)100,110) (_7)(100.111)
101 | (—1)00L000) (_1)(10L001) (_1)(10L010) (__1)(I0L011) (—1)(101.100) (_1)(0L101) (__{)(0L10) (_)(10L111)
110 | (=1)T10000 (_7){110.00) (_1)(110.010) (_1)11001) (=1){10.100) (_1)(110.10) (_1){110110) (71011
1| (~1)I000 ()0 (_yatnon gy (—1)WLI00) (_qyIHLIon (gydILie) ()i |

! This is reminiscent of the definition of an inner product. In fact, it is an inner product, but on an
interesting vector space. The vector space is not a complex vector space, nor a real vector space. It is
a vector space over the field with exactly two elements {0, 1}. This field is denoted Z; or F,. The set of
elements of the vector space is {0, 1}", the set of bit strings of length 7, and the addition is pointwise @.
The zero element is the string of n zeros. Scalar multiplication is obvious. We shall not list all the
properties of this inner product space but we strongly recommend that you do so. Meditate on a basis
and on the notions of orthogonality, dimension, etc.

183

184 Algorithms

000 001 010 011 100 101 110 111

000 [
001
010

1 o

= (6.60)
101 -1 1 -1 -1 1 -1 1
110 I -1 -1 -1 -1 1 1
m L1 -1 -1 1 -1 1 1 -1]
From this, we can write a general formula for H®" as
HO"i,] = ——(—1)6), (6.61)
A /2n

where i and j are the row and column numbers in binary.
What happens if we multiply a state with this matrix? Notice that all the elements
of the leftmost column of H®" are +1. So if we multiply H®" with the state

00000000 17
00000001 | O

0000010 | O

10) =100...0) = . , (6.62)

11111110 | O
11111111 [O

we see that this will equal the leftmost column of H®":

00000000 17
00000001 | 1

HO0) — HO 0] 1 00000010 | 1 1 Z (6.63)
"0) = H*"[—,0] = —. = IX). .
NOTE : NG et

11111110
11111111

For an arbitrary basic state |y), which can be represented by a column vector
with a single 1 in position y and 0’s everywhere else, we will be extracting the yth
column of H®":

1
H®"|y) = H®"[—y] = N > (D)™). (6.64)

xe{0,1}"

Let us return to the problem at hand. We are trying to tell whether the given
function is balanced or constant. In the last section, we were successful by placing

6.2 The Deutsch-Jozsa Algorithm 185

the bottom control qubit in a superposition. Let us see what would happen if we did
the same thing here.

x)
Ur
D 771
L]
| TT> | TT) I TT>
%o ?1 ¥2
(6.65)
In terms of matrices this amounts to
Ur(1 ® H)lx, 1). (6.66)

For an arbitrary x = xpx1x; ... Xx,—1 as an input in the top »n qubits, we will have
the following states:

lpo) = Ix, 1). (6.67)

After the bottom Hadamard matrix, we have

lp1) = Ix) [I0>\;§|1>] = ['X’ O)J;" ﬂ . (6.68)

Applying Uy we get

o =) [If(x) @mg FX) @ 1>} i [w } ’ 669

where f(x) means the opposite of f(x).

x) [, i f0 =0
o) = = (-1)’Mx) [

X [L2], i e =1

10) — 1
V2

)

] . (6.70)

This is almost exactly like Equation (6.27) in the last section. Unfortunately, it is just
as unhelpful.

Let us take another stab at the problem and present the Deutsch—Jozsa algo-
rithm. This time, we shall put [x) = |xox; - - - X,—1) into a superposition in which all

186 Algorithms

2" possible strings have equal probability. We saw that we can get such a superposi-
tion by multiplying H®" by |0) = |000 - - - 0). Thus, we have

|0)

//" H®n //" //n H®n //” E
Uy
) [r7]
L]
i) T i) i)
l¢o) lo1) (%)) le3) ©.71)

In terms of matrices this amounts to
(H®" ® DU;(H®*" @ H)|0,1). (6.72)
Each state can be written as

lpo) =10, 1), (6.73)

2o @ 110y - 1)
|¢1>={ o [% } (6.74)

(as in Equation (6.63)). After applying the U unitary matrix, we have

L(=1)7Mx) _
= |:er{0,1} } [|0> |1>] | 675)

Vor V2

Finally, we apply H®" to the top qubits that are already in a superposition of differ-
ent x states to get a superposition of a superposition

_1)/® _1)@x
lp3) = ZXE{OJ}”(b Zze{O,l}"(R [|0> 7 |1>] (6.76)
2" V2
from Equation (6.64). We can combine parts and “add” exponents to get
B _1)f®(_1)@x
l3) = er{o,l}" Zze{o,l}"(DD e [I0> — |1)] (6.77)
2" V2

V2

B _1\/(®0®(z,x)
er{o,l}" Zze{o,l}”(1) |z)j| |:|0) - |1>]
2" ’

6.3 Simon’s Periodicity Algorithm

Now the top qubits of state |¢3) are measured. Rather than figuring out what we
will get after measuring the top qubit, let us ask the following question: What is the
probability that the top qubits of |¢p3) will collapse to the state |0)? We can answer
this by setting z = 0 and realizing that (z, x) = (0, x) = 0 for all x. In this case, we
have reduced |¢3) to

_1\/(®
er{o,l}"(D10) |:|0)—|1>]

> % (6.78)

So, the probability of collapsing to |0) is totally dependent on f(x). If f(x) is con-
stant at 1, the top qubits become

er{o,l}n(_l)m) _ —(2")10)

= —1|0). .
T X |0) (6.79)

If f(x) is constant at 0, the top qubits become

er{o,l}” 110) _ 2"10)

5 i = +110). (6.80)

And finally, if f is balanced, then half of the x’s will cancel the other half and the
top qubits will become

Doy D0
xe{0,1} |0)
— 1 _00). 6.81
oz o = 010) (6.81)

When measuring the top qubits of |¢3), we will only get |0) if the function is constant.
If anything else is found after being measured, then the function is balanced.

In conclusion, we have solved the — admittedly contrived — problem in one func-
tion evaluation as opposed to the 2"~! 4- 1 function evaluations needed in classical
computations. That is an exponential speedup!

Exercise 6.2.5 What would happen if we were tricked and the given function was
neither balanced nor constant? What would our algorithm produce? [|

6.3 SIMON’S PERIODICITY ALGORITHM

Simon’s algorithm is about finding patterns in functions. We will use methods that
we already learned in previous sections, but we will also employ other ideas. This
algorithm is a combination of quantum procedures as well as classical procedures.

Suppose that we are given a function f : {0, 1} — {0, 1}" that we can evaluate
but it is given to us as a black box. We are further assured that there exists a secret
(hidden) binary string ¢ = ¢oc1¢; - - - ¢,—1, such that for all strings x,y € {0, 1}", we
have

f(x)= f(y) ifandonlyif x=y®c, (6.82)

187

188

Algorithms

where @ is the bitwise exclusive-or operation. In other words, the values of f repeat
themselves in some pattern and the pattern is determined by ¢. We call ¢ the period
of f.The goal of Simon’s algorithm is to determine c.

Example 6.3.1 Let us work out an example. Let n = 3. Consider ¢ = 101. Then we
are going to have the following requirements on f:

m 000 & 101 = 101; hence, f(000) = f(101).
m 001 & 101 = 100; hence, f(001) = f(100).
m 010 @ 101 = 111; hence, f(010) = f(111).
m 011 @ 101 = 110; hence, f(011) = f(110).
® 100 @ 101 = 001; hence, f(100) = £(001).
m 101 & 101 = 000; hence, f(101) = £(000).
® 110 @ 101 = 011; hence, f(110) = f(011).
m 111 @101 = 010; hence, f(111) = f(010). 0O
Exercise 6.3.1 Work out the requirements on f if ¢ = 011. |

Notice that if ¢ = 0", then the function is one to one. Otherwise the function is
two to one.
The function f will be given as a unitary operation that can be visualized as

X Lo
— y
U 6.83
y) ! y & f(x)) (683)
/n //n

where |x,y) goes to |x,y @ f(x)). Uy is again its own inverse. Setting y = 0" would
give us an easy way to evaluate f(x).

How would one solve this problem classically? We would have to evaluate f
on different binary strings. After each evaluation, check to see if that output has
already been found. If one finds two inputs xy and x; such that f(x1) = f(xz), then
we are assured that

xi1=x2®¢ (6.84)
and can obtain ¢ by @-ing both sides with x;:

X1PX =X Pchx; =c. (6.85)
If the function is a two-to-one function, then we will not have to evaluate more than
half the inputs before we get a repeat. If we evaluate more than half the strings and
still cannot find a match, then we know that f is one to one and that ¢ = 0". So,

in the worst case, 27 + 1 =271 41 function evaluations will be needed. Can we do
better?

6.3 Simon’s Periodicity Algorithm 189

The quantum part of Simon’s algorithm basically consists of performing the fol-
lowing operations several times:

|0)

//" H®n //n //” H®n //" /74
Uy
10)
/n /n
7
i i i f
o) 1) l92) lp3) (6.86)

In terms of matrices this is

(H®" @)Uf(H®" ® 1)0,0). (6.87)
Let us look at the states of the system. We start at

Ip0) = 10, 0). (6.88)

We then place the input in a superposition of all possible inputs. From Equa-
tion (6.63) we know that it looks like

> x, 0)
xe{0,1}"

1) = o (6.89)
Evaluation of f on all these possibilities gives us
> X ()
lp2) = ‘6{0’1}/27 : (6.90)
And finally, let us apply H®" to the top output, as in Equation (6.64):
\ =Dz, f(x))
|(,03> _ er{O,l} Zze{o,l}) (691)

21’!
Notice that for each input x and for each z, we are assured by the one who gave us

the function that the ket |z, f(x)) is the same ket as |z, f(x @ ¢)). The coefficient for
this ket is then

(1) (1)

6.92
. (6.92)
Let us examine this coefficient in depth. We saw that (—, —) is an inner product
and from Equation (6.57)
(_1)(z,x> + (_1)(z,x€Bc) B (_1)(z,x) + (_1)<z,x>e§(z,c>
2 B 2
1) 4 (1) (1)
_ (=D +(2) D™ (6.93)

So, if (z, ¢) = 1, the terms of the numerator of this coefficient will cancel each other
out and we would get g In contrast, if (z, ¢) = 0, the sum will be %2 = #+1. Hence,

190 Algorithms

upon measuring the top qubits, we will only find those binary strings such that
(z,c) = 0.

This algorithm becomes completely clear only after we look at a concrete exam-
ple.

Reader Tip. Warning: admittedly, working out all the gory details of an example can
be a bit scary. We recommend that the less meticulous reader move on to the next
section for now. Return to this example on a calm sunny day, prepare a good cup of
your favorite tea or coffee, and go through the details: the effort will pay off. Q

Consider the function f : {0, 1} — {0, 1}? defined as

000e «000

(6.94)
111e olll
Let us go through the states of the algorithm with this function:
lgo) = 10,0) = |0) ® |0), (6.95)
1) LoV ® |0) (6.96)
)= ———F="— . .
V8

We might also write this as
1

lp1) = %

+1100) ® [000) + [101) ® |000) + |110) ® [000) + [111) ® |000)).

(1000) ® |000) + [001) ® |000) + [010) ® |000) + |011) ® [000)

6.3 Simon’s Periodicity Algorithm 191

Atfter applying Uy, we have

Doy X @)

lp2) = (6.97)
V8
or
1
¢2) = —=(1000) @ 100) + |001) @ [001) +[010) @ [101) +]011) @ [111)
+[100) ® |001) + |101) ® [100) + [110) ® |111) + [111) ® |101)).
Then applying H®" @ I we get
-1 (z,x)

03) = er{0,1}3 Zze{o.l}z()*Nz) ® f(x)). (698)

8

This amounts to

lps) = %((+1)|000> ®1£(000)) + (+1)1000) ® | £(001)) + (+1)000) ® | £(010)) + (+1)]000) ® | f(011))

+ (+1)1000) ® | £(100)) + (+1)|000) ® | f(101)) + (+1)1000) ® | £(110)) + (+1)I000} ® | f(111))

+(4+1)]001) ® | £(000)) + (—=1)[001) ® | £(001)) + (4+1)|001) ® | £(010)) 4 (—=1)[001) ® | £(011))
+(+1)1001) ® | £(100)) + (=1)1001) ® | £(101)) + (+1)]001) ® | £(110)) + (=1)|001) ® | f(111))

+ (4+1)]010) ® | £(000)) + (+1)]010) ® | £(001)) + (—1)]010) ® | £(010)) + (—1)[010) ® | £(011))
+(+1)1010) ® | £(100)) + (+1)]010) ® | £(101)) + (=1)]010) ® | £(110)) + (=1)|010) ®@ | f(111))

+ (+DI011) ® | f(000)) + (—1)|011) ® | £(001)) + (=1)011) ® | £(010)) + (+1)[011) ® | £(011))
+(+DI011) ® | f(100)) + (—=1)[011) ® | f(101)) + (=1)1011) ® | £(110)) + (+1)|011) ® | f(111))

+ (+1)[100) ® | £(000)) + (+1)[100) ® | £(001)) + (+1)[100) ® | £(010)) + (+1)[100) ® | f(011))
+(=1)]100) ® | £(100)) + (—1)]100) ® | £(101)) + (—1)[100) ® | £(110)) + (—1)[100) ® | f(111))

+(+D[101) ® | £(000)) + (—1)|101) ® | £(001)) + (+1)1101) ® | £(010)) + (~1)[101) ® | f(011))
+ (=DI101) ® | f(100)) + (+1)[101) ® | £(101)) + (=1)[101) ® | f(110)) + (+1)]101) ® | f(111))

+(+1)I110) ® | £(000)) + (+1)[110) ® | £(001)) + (=1)[110) ® | £(010)) + (=1)|110) ® | £(011))
+(=1)[110) ® | £(100)) + (=1)[110) ® | £(101)) + (+1)[110) ® | £(110)) + (+1)[110) ® | f(111))

+(+DI111) ® | £(000)} + (=1)[111) ® | f(001)) + (=1)I111) ® | £(010)) + (+1)[111) ® | £(011))
+ (=DI111) ® | f(100)) + (+D[111) @ | f(101)) + (+D)[111) @ | f(110)) + (=DI111) ® | f(111))).

Notice that the coefficients follow the exact pattern as H®? on page 184.

192 Algorithms

or

Evaluating the function f gives us

lp3) =

%((+1)|000) ® |100) + (+1)]000) ® |001) + (+1)]000) ® |101) + (+1)|000) ® |111)

+ (+1)[000) ® [001) + (+1)[000) ® [100) + (+1)[000) & [111) + (+1)[000) & |101)

+ (+1)[001) ® |100) + (—1)[001) ® [001) + (+1)]001) ® [101) + (—1)]001) & |111)
+(+1)[001) ® [001) + (=1)[001) ® [100) + (+1)[001) ® |111) + (~1)[001) ® |101)

+ (+1)[010) ® |100) + (+1)[010) ® [001) + (—1)[010) ® |101) + (—1)[010) @ [111)
+ (+1)[010) ® [001) + (+1)[010) ® [100) + (—1)[010) ® |111) + (—1)[010) ® |101)

+ (+1)[011) ® |100) + (—1)[011) ® [001) + (—1)]011) ® [101) + (+1)]011) ® [111)
+ (+1)011) ® [001) + (—1)[011) ® [100) + (—1)|011) ® [111) + (+1)]011) ® |101)

+ (+1)]100) ® |100) + (+1)[100) ® [001) + (+1)]100) ® [101) + (+1)]100) ® |111)
+ (=1)[100) ® [001) 4 (—1)[100) ® [100) + (—1)]100) ® [111) + (—1)]100) & |101)

+ (+1)[101) ® [100) 4 (—1)[101) ® [001) + (+1)]101) ® [101) + (—1)]101) ® [111)
+(=1)[101) ® [001) + (+1)[101) ® [100) + (—1)]101) ® [111) + (+1)[101) ® |101)

+ (+1)[110) ® |100) + (+1)]110) ® [001) + (—1)|110) ® [101) + (—1)|110) ® [111)
+ (=1)[110) ® [001) + (—1)[110) ® [100) + (+1)]110) ® [111) + (+1)]110) ® |101)

+ (+1)[111) ® [100) + (—1)[111) ® [001) + (—1)[111) ® [101) + (+1)[111) ® [111)
+ (=D)[111) ® |001) + (+1)[111) @ [100) + (+1)|111) ® [111) + (—1)[111) ® [101)).

Combining like terms and canceling out gives us

lp3) =

%((+2)|000) ® 100) + (42)[000) ® |001) + (4+2)|000) ® |101) + (+2)|000) ® |111)
+ (+2)(010) ® |100) + (+2)]010) ® |001) 4 (—2)|010) ® [101) + (—2)|010) ® [111)
+ (4+2)1101) ® [100) + (—2)]101) ® |001) + (+2)[101) ® [101) + (—2)[101) ® |111)
+(+2)]111) ® |100) + (—2)|111) ® [001) + (=2)[111) ® [101) + (+2)[111) ® |111))

lps) = é((+2)|000) ® (1100) +1001) + [101) + [111))

+(+2)|010) ® (]100) + [001) — [101) — [111))
+(+2)]101) ® (]100) — [001) + [101) — [111))
+(+2)[111) ® (]100) — |001) — [101) + [111))).

When we measure the top output, we will get, with equal probability, 000, 010, 101,
or 111. We know that for all these, the inner product with the missing ¢ is 0. This

6.3 Simon’s Periodicity Algorithm

gives us the set of equations:

(i) (000,¢) = 0
(ii) (010, ¢) =

(iii) (101 c) = 0
(iv) (111,¢) =0

If we write ¢ as ¢ = cjcpc3, then Equation (i) tells us that ¢; = 0. Equation (iii)
tells us that ¢; @ ¢z = 0 or that either ¢; = ¢3 = 0 or ¢; = ¢3 = 1. Because we know
that ¢ # 000, we come to the conclusion that ¢ = 101.

Exercise 6.3.2 Do a similar analysis for the function f defined as

000e | «(000

(6.99)

111e o111

After running Simon’s algorithm several times, we will get n different z; such that
(z;, ¢) = 0. We then put these results into a classical algorithm that solves “linear
equations.” They are linear equations; rather than using the usual + operation, we
use @ on binary strings. Here is a nice worked-out example.

Example 6.3.2 Imagine that we are dealing with a case where n = 7. That means
we are given a function f :{0,1})” — {0, 1}”. Let us assume that we ran the algo-
rithm 7 times and we get the following results:

(i) (1010110, ¢) = 0

(i) (0010001, ¢) =0
(iii) (1100101, ¢) =0

193

194 Algorithms

(iv) (0011011, ¢) =
(v) (0101001, ¢) =
(vi) (0011010, ¢) =
(vii) (0110111, ¢) =

To clear the first column of 1’s, we are going to “add” (really pointwise exclusive
or) the first equation to the third equation. This gives us

(1) (1010110, ¢) =

(if) (0010001, ¢) =

(iii) (0110011, ¢) =

(iv) (0011011, ¢) =

¢ =

)=

)=

o~ e~~~

(v) (0101001, ¢
(vi) (0011010, ¢
(vii) (0110111, ¢

To clear the second column of 1’s, we are going to “add” the third equation to
the fifth and seventh equations. This gives us

(i)

(1010110, ¢)
(i) (0010001, ¢)
(i) (0110011, c)
(iv) (0011011, ¢)
(c) =
(
(

0
0
0
0
(v) (0011010, ¢ 0

(vi) (0011010, ¢) =
(vii) (0000100, c) —0.

To clear the third column of 1’s, we are going to “add” the second equation to
Equations (i), (iii), (iv), (v), and (vi). This gives us

(i) (1000111, ¢) =
(i) (0010001, ¢) =
(iii) (0100010, ¢) =
(iv) (0001010, ¢) =
(v) (0001011, ¢) =
(vi) (0001011, ¢) =
(vii) (0000100, ¢) =

To clear the fourth column of 1’s, we are going to “add” Equation (iv) to Equa-
tions (v) and (vi). We are going to clear the fifth column by adding Equation (vii) to
Equation (i). This gives us

(i) (1000011, ¢) = 0
(ii) (0010001, ¢) =0
(i) (0100010, ¢) =0
(iv) (0001010, ¢) = 0
(
(
(

< = L 2

(v) (0000001, ¢) = 0
(vi) (0000001, ¢) = 0
(vii) (0000100, ¢) = 0.

6.4 Grover’s Search Algorithm

And finally, to clear the sixth column of 1’s, we are going to “add” Equation (v)
to Equations (i), (ii), and (vi). We get
(i)
(i) (0010000, ¢
(iii) (0100010, ¢

(1000010, ¢) =
() =
() =
(iv) (0001010, ¢) =
()
() =
(c)

(v) (0000001, ¢
(vi) (0000000, ¢

0
0
(vii) (0000100, ¢) =0

We can interpret these equations as

(1) c1®cg=0
(11) C3 = 0
(iii) oD cs=0
(iv) c4®cs=0

V) ¢7=0
(vi)
(Vii) cs =0.

Notice thatif cg = 0,thenc¢; =c; =c4 =0and thatifcg = 1,thenc; =c¢; = ¢4 = 1.
Because we are certain that f is not one to one and ¢ # 0000000, we can conclude
that ¢ = 1101010. O

Exercise 6.3.3 Solve the following linear equations in a similar manner:

(i)
(if)

(11110000, ¢) =
(01101001, ¢) =
(iii) (10010110, ¢) =
(iv) (00111100, ¢) =
(v) (11111111, ¢) =
(vi) (11000011, ¢) =
(vii) (10001110, ¢) =
(viii) (01110001, ¢) =

(Hint: The answer is ¢ = 10011001.) [

In conclusion, for a given periodic f, we can find the period ¢ in n function eval-
uations. This is in contrast to the 2"~! + 1 needed with the classical algorithm.

Reader Tip. We shall see this concept of finding the period of a function in Section
6.5 when we present Shor’s algorithm. Q

6.4 GROVER’S SEARCH ALGORITHM

How do you find a needle in a haystack? You look at each piece of hay separately
and check each one to see if it is the desired needle. That is not very efficient.

195

196

Algorithms

The computer science version of this problem is about unordered arrays instead of
haystacks. Given an unordered array of m elements, find a particular element. Clas-
sically, in the worst case, this takes m queries. On average, we will find the desired
element in m/2 queries. Can we do better?

Lov Grover’s search algorithm does the job in /m queries. Although this is not
the exponential speedup of the Deutsch—Jozsa algorithm and Simon’s algorithm, it
is still very good. Grover’s algorithm has many applications to database theory and
other areas.

Because, over the past few sections, we have become quite adept at functions,
let us look at the search problem from the point of view of functions. Imagine that
you are given a function f : {0, 1} — {0, 1} and you are assured that there exists
exactly one binary string x¢ such that

1, ifx=xy,
f(x) = (6.100)
0, ifx# xp.

We are asked to find xq. Classically, in the worst case, we would have to evaluate
all 2" binary strings to find the desired x¢. Grover’s algorithm will demand only

V2r = 2% evaluations.

f will be given to us as the unitary matrix Uy that takes [x, y) to [X, f(X) @ y).
For example, for n = 2, if f is the unique function that “picks out” the binary string
10, then Uy looks like

00,0 00,1 01,0 01,1 10,0 10,1 11,0 11,1
00,0 [1]
00,1 1

01,0 1

01,1 1

10,0 1

10,1 1

11,0 1

1.1 | 1

(6.101)

Exercise 6.4.1 Find the matrices that correspond to the other three functions from
{0, 1)? to {0, 1} that have exactly one element x with f(x) = 1. |

As a first try at solving this problem, we might try placing |x) into a superposition
of all possible strings and then evaluating Uy.

|0)

/n Hen /n n

10) (6.102)

l%0) lo1) lp2)

6.4 Grover’s Search Algorithm 197

In terms of matrices this becomes

Ur(H®" ® 1)]0,0). (6.103)
The states are
lpo) = 10, 0), (6.104)
1) = Z¥Mﬁﬁ|® (6.105)
V2n ’

and

> oy 1% £
lg2) = . .
‘/2n

Measuring the top qubits will, with equal probability, give one of the 2" binary
strings. Measuring the bottom qubit will give |0) with probability 2”2;1, and |1) with
probability 21 If you are lucky enough to measure |1) on the bottom qubit, then, be-
cause the top and the bottom are entangled, the top qubit will have the correct an-
swer. However, it is improbable that you will be so lucky. We need something new.

Grover’s search algorithm uses two tricks. The first, called phase inversion,
changes the phase of the desired state. It works as follows. Take Uy and place the

bottom qubit in the superposition

(6.106)

0) — |1
19 = 1D (6.107)
V2
state. This is similar to quantum circuit (6.21). For an arbitrary x, this looks like
Ix)
Uy
1) (6.108)
L] —
i 1l 1
leo) 1) le2)
In terms of matrices this becomes
Ur(l, ® H)Ix, 1). (6.109)

Because both Uy and H are unitary operations, it is obvious that phase inversion is
a unitary operation.
The states are

lgo) = Ix, 1), (6.110)

_ m—uquxm—mn} 111
o) m[/ﬁ = (6.111)

198

Algorithms

79

53

42

38

23
17

Figure 6.1. Five numbers and their average

and
o [f®en-lfme] [1f&)—1FKx)
|§02)—|X>[=]_|x> [—ﬁ } (6.112)
Remembering that a — b = (—1)(b — a), we may write
| >—(—1>f<">|x>[—|0>_|l>}_ ot et (6.113)
$2) = NG = .

Fx) [%] . ifx %X

How does this unitary operation act on states? If |x) starts off in a equal superpo-

sition of four different states, i.e., [% % %, %]T, and f chooses the string “10,” then
after performing a phase inversion, the state looks like [%, %, —%, %]T Measuring |x)
does not give any information: both |%|2 and | — %lz are equal to +%. Changing the
phase from positive to negative separates the phases, but does not separate them
enough. We need something else.

What is needed is a way of boosting the phase separation of the desired bi-
nary string from the other binary strings. The second trick is called inversion about
the mean or inversion about the average. This is a way of boosting the separation
of the phases. A small example will be helpful. Consider a sequence of integers:
53,38,17,23, and 79. The average of these numbers is a = 42. We might picture
these numbers as in Figure 6.1.

The average is the number such that the sum of the lengths of the lines above
the average is the same as the sum of the lengths of the lines below. Suppose we
wanted to change the sequence so that each element of the original sequence above
the average would be the same distance from the average but below. Furthermore,
each element of the original sequence below the average would be the same distance
from the average but above. In other words, we are inverting each element around
the average. For example, the first number, 53 is a — 53 = —11 units away from the
average. We must adda = 42to —11 and geta + (@ — 53) = 31. The second element
of the original sequence, 38, is a — 38 = 4 units below the average and will go to

6.4 Grover’s Search Algorithm 199

67
61

46

42

31

Figure 6.2. After an inversion about the mean.

a + (a — 38) = 46. In general, we shall change each element v to

vV =a+(a—v) (6.114)
or

v =—v+2a. (6.115)

The above sequence becomes 31, 46, 67, 61, and 5. Notice that the average of this
sequence remains 42 as in Figure 6.2.

Exercise 6.4.2 Consider the following number: 5, 38, 62, 58,21, and 35. Invert these
numbers around their mean. [|

Let us write this in terms of matrices. Rather than writing the numbers as a
sequence, consider a vector V = [53, 38, 17, 23, 79]T. Now consider the matrix

11 1 1 1

5 55 35 5

111 1 1

5 55 5 5

— |1 1 1 1 1
A=135 5 5 35 3 (6.116)

11 1 1 1

5 55 35 53

11 1 1 1

L5 5 5 5 5]
It is easy to see that A is a matrix that finds the average of a sequence:

AV =[42,42,42,42,42]". (6.117)

In terms of matrices, the formula v' = —v + 2a becomes

V' = -V +24V = (-1 +24)V. (6.118)

200 Algorithms

Let us calculate

i 2 2
(-1+5%) 5
§ 1+
— = 2 2
(—1+2A4) = 2 2
2 2
5 5
2 2
L5 5

And, as expected,
(=1 +2A4)YV =V,

or in our case,

v LI

(-1+3)

vy LI

I I N

(-1+3)

2
5

(—1+2A)[53,38,17,23,79]" = [31, 46, 67,61, 5]".

.
5
2
5
2
5
2
5
(-1+32)
(6.119)
(6.120)
(6.121)

Let us generalize: rather than dealing with five numbers, let us deal with 2" num-
bers. Given n qubits, there are 2" possible states. A state is a 2" vector. Consider the

following 2"-by-2" matrix:

o

Exercise 6.4.3 Prove that A2 = A.

(6.122)

Multiplying any state by A will give a state where each amplitude will be the av-
erage of all the amplitudes. Building on this, we form the following 2”7-by-2" matrix

—I+2A=

-1+ %

2
on

2
on

2

om

-1+ %

2

on

2
m

2
mn

=y

(6.123)

Multiplying a state by —I + 2 A will invert amplitudes about the mean.

We must show that —1 + 2 A is a unitary matrix. First, observe that the adjoint of
—1 + 2 A is itself. Then, using the properties of matrix multiplication and realizing
that matrices act very much like polynomials, we have

(=1 +2A) % (=1 +2A) = +1 —2A —2A + 4 A?
=] —4A+4A’=T—-4A+4A =1,

(6.124)

6.4 Grover’s Search Algorithm 201

where the first equality is from distributivity of matrix multiplication, the second
equality comes from combining like terms, and the third equality is from the fact
that A2 = A. We conclude that (— +2A) is a unitary operation and acts on states
by inverting the numbers about the mean.

When considered separately, phase inversion and inversion about the mean are
each innocuous operations. However, when combined, they are a very powerful op-
eration that separates the amplitude of the desired state from those of all the other
states.

Example 6.4.1 Let us do an example that shows how both these techniques work
together. Consider the vector

[10, 10, 10, 10, 10]7. (6.125)

We are always going to perform a phase inversion to the fourth of the five numbers.
There is no difference between the fourth number and all the other numbers. We
start by doing a phase inversion to the fourth number and get

[10, 10, 10, —10, 10]”. (6.126)

The average of these five numbers is a = 6. Calculating the inversion about the mean
we get

—v+2a=-10+(2x6)=2 (6.127)
and

—v+2a =10+ (2 x 6) =22. (6.128)
Thus, our five numbers become

[2,2,2,22,2]". (6.129)

The difference between the fourth element and all the others is 22 — 2 = 20.
Let us do these two operations again to our five numbers. Another phase inver-
sion on the fourth element gives us

[2.2,2,-22,2]". (6.130)
The average of these numbers is a = —2.8. Calculating the inversion about the mean
we get

—v+2a=-24+(2x-28)=-7.6 (6.131)
and

—v+2a =22+ (2 x —2.8) =164. (6.132)

Hence, our five numbers become
[-7.6, 7.6, =7.6,16.4, =7.6]". (6.133)

The difference between the fourth element and all the others is 16.4 + 7.6 = 24. We
have further separated the numbers. This was all done with unitary operations. [

202

Algorithms

Exercise 6.4.4 Do the two operations again on this sequence of five numbers. Did
our results improve? |

How many times should these operations be done? /2" times. If you do it more
than that, the process will “overcook” the numbers. The proof that /2" times is
needed is beyond this text. Suffice it to say that the proof actually uses some very
pretty geometry (well worth looking into!).

We are ready to state Grover’s algorithm:

Step 1. Start with a state |0)
Step 2. Apply H®"
Step 3. Repeat +/2" times:
Step 3a. Apply the phase inversion operation: Uy(I ® H)
Step 3b. Apply the inversion about the mean operation: —7 +2A
Step 4. Measure the qubits.

We might view this algorithm as

Repeat +/2" times
IF 777777 };h;se 77777 I;VgI'SYOIT o jl
: inversion about mean |
10) — | |
//n H®n : //n n .y + 2A n l
| Uy I
) |
| —{H — |
| |
| |
| |
- _____ _
T T T T
lo1) lp2) |®34) [®3p)

(6.134)

Example 6.4.2 Let us look at an example of an execution of this algorithm. Let f
be a function that picks out the string “101.” The states after each step will be

000 001 010 011 100 101 110 111
ey=[0 0 0 0 0 0 0 0], (6.135)

6.4 Grover’s Search Algorithm 203

000 001 010 o011 100 101 110 111
[5 U SRS S EN S U I 6136
w=[F F F H F H F Hl 619
000 001 010 O11 100 101 110 111 '
[S NS NS I IS AN EURS BN S IR
w= [V& B VB VB VB VE YR VB] - 613
The average of these numbers is
7L _ L 6 3
NG V8
a = —¥8_ - (6.138)
8 8 448
Calculating the inversion about the mean we have
1 3 1
—v+2a=——+<2x—)=— 6.139
V38 48/ 248 (6139)
and
1 3 5
—v+42a=—+ (2 X —) =—. (6.140)
V8 48/ 28
Thus, we have
000 001 010 o011 100 101 110 111
B 1 1 1 1 1 5 1 1
o= [2V5 3VE B VB W 3VE 2 VRl
(6.141)
A phase inversion will give us
000 001 010 o011 100 101 110 111 '
_ 1 1 1 1 1 __5 1 1
120} = [2\/§’ V8 2V8° 2V87 28 28 2R 2J§]'
(6.142)
The average of these numbers is
7w A — S 1
a= 28 28 _ - (6.143)
8 88
Calculating for the inversion about the mean we have
1 1 1
42 =—— + (2 x —> - (6.144)
28 88 4v/8
and
5 1 11
—v+2a=—+(2x—>=—. 6.145
N GNP (@14

204

Algorithms

Hence, we have

000 001 010 o011 100 101 110 111 °

[e e e [t [§ N [|
)= |75 W8 W5 V8 aE aVE as a8l
(6.146)

For the record, ﬁg =0.97227 and ﬁg = —0.08839. Squaring the numbers gives
us the probability of measuring those numbers. When we measure the state in

Step 4, we will most likely get the state

000 001 010 011 100 101 110 111 '
ed=[0 0 0 0 0 1 o0 0], (6.147)

which is exactly what we wanted. O

Exercise 6.4.5 Do a similar analysis for the case where n = 4 and f chooses the
“1101” string. |

A classical algorithm will search an unordered array of size » in n steps. Grover’s
algorithm will take time +/n. This is what is referred to as a quadratic speedup. Al-
though this is very good, it is not the holy grail of computer science: an exponential
speedup. In the next section we shall meet an algorithm that does have such a
speedup.

What if we relax the requirements that there be only one needle in the haystack?
Let us assume that there are ¢ objects that we are looking for (with ¢ < 22—"). Grover’s
algorithm still works, but now one must go through the loop 27 times. There are
many other types of generalizations and assorted changes that one can do with
Grover’s algorithm. Several references are given at the end of the chapter. We dis-
cuss some complexity issues with Grover’s algorithm at the end of Section 8.3.

6.5 SHOR’S FACTORING ALGORITHM

The problem of factoring integers is very important. Much of the World Wide Web’s
security is based on the fact that it is “hard” to factor integers on classical comput-
ers. Peter Shor’s amazing algorithm factors integers in polynomial time and really
brought quantum computing into the limelight.

Shor’s algorithm is based on the following fact: the factoring problem can be
reduced to finding the period of a certain function. In Section 6.3 we learned how
to find the period of a function. In this section, we employ some of those periodicity
techniques to factor integers.

We shall call the number we wish to factor N. In practice, N will be a large
number, perhaps hundreds of digits long. We shall work out all the calculations for
the numbers 15 and 371. For exercises, we ask the reader to work with the number
247. We might as well give away the answer and tell you that the only nontrivial
factors of 247 are 19 and 13.

We assume that the given N is not a prime number but is a composite number.
There now exists a deterministic, polynomial algorithm that determines if N is prime

6.5 Shor’s Factoring Algorithm

(Agrawal, Kayal, and Saxena, 2004). So we can easily check to see if N is prime
before we try to factor it.

Reader Tip. There are several different parts of this algorithm and it might be too
much to swallow in one bite. If you are stuck at a particular point, may we suggest
skipping to the next part of the algorithm. At the end of this section, we summarize
the algorithm. o

Modular Exponentiation. Before we go on to Shor’s algorithm, we have to re-
mind ourselves of some basic number theory. We begin by looking at some modular
arithmetic. For a positive integer N and any integer a, we write a Mod N for the
remainder (or residue) of the quotient a/N. (For C/C++ and Java programmers,
Mod is recognizable as the % operation.)

Example 6.5.1 Some examples:

7 Mod 15 = 7 because 7/15 = 0 remainder 7.

99 Mod 15 = 9 because 99/15 = 6 remainder 9.

199 Mod 15 = 4 because 199/15 = 13 remainder 4.

5,317 Mod 371 = 123 because 5,317/371 = 14 remainder 123.

2,3374 Mod 371 = 1 because 2,3374/371 = 63 remainder 1.

1,446 Mod 371 = 333 because 1,446/371 = 3 remainder 333. 0

Exercise 6.5.1 Calculate

(i) 244,443 Mod 247
(i) 18,154 Mod 247

(iii) 226,006 Mod 247. n
We write
a=a"Mod N if and only if (a Mod N) = (¢’ Mod N), (6.148)

or equivalently, if N is a divisor of a — a’, i.e., N|(a — a@’).
Example 6.5.2 Some examples:

17 =2 Mod 15

126 = 1,479,816 Mod 15

534 =1,479 Mod 15

2,091 =236 Mod 371

3,350 = 2237 Mod 371

3,325,575 = 2,765,365 Mod 371. 0

Exercise 6.5.2 Show that

(i) 1,977 = 1 Mod 247
(i) 16,183 = 15,442 Mod 247
(iii) 2,439,593 = 238,082 Mod 247.

205

206

Algorithms

With Mod understood we can start discussing the algorithm. Let us randomly
choose an integer a that is less than N but does not have a nontrivial factor in com-
mon with N. One can test for such a factor by performing Euclid’s algorithm to
calculate GCD(a, N). If the GCD is not 1, then we have found a factor of N and we
are done. If the GCD is 1, then a is called co-prime to N and we can use it. We shall
need to find the powers of a modulo N, that is,

a®Mod N, a' Mod N, a>Mod N, a*Mod N, ... (6.149)
In other words, we shall need to find the values of the function
fan(x) =a* Mod N. (6.150)
Some examples are in order.

Example 6.5.3 Let N =15 and a = 2. A few simple calculations show that we get
the following:

X 01 2 3 4 5 6 7 8 9 10 11 12
fHasx) 1.2 4 8 1 2 4 8 1 2 4 8 1
(6.151)
For a = 4, we have
X 01 2 3 4 5 6 7 8 9 10 11 12
fars(x) 1 4 1 4 1 4 1 4 1 4 1 4 1
(6.152)
For a = 13, we have
X o 1 2 3 4 5 6 7 8 9 10 11 12
fizis(x) 1 13 4 7 1 13 4 7 1 13 4 7 1
(6.153)
|

The first few outputs of fi3 15 function can be viewed as the bar graph in Fig-
ure 6.3.

Example 6.5.4 Let us work out some examples with N = 371. This is a little harder
and probably cannot be done with a handheld calculator. The numbers simply get
too large. However, it is not difficult to write a small program, use MATLAB or
Microsoft Excel. Trying to calculate a* Mod N by first calculating a* will not go
very far, because the numbers will usually be beyond range. Rather, the trick is to
calculate a* Mod N from a*~! Mod N by using the standard number theoretic fact

6.5 Shor’s Factoring Algorithm 207

6
4
o N I | I a I - I
0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

Figure 6.3. The first few outputs of fi3.15.

%]

that

ifa=a"Mod Nand b = b Mod N, thena x b=a’ x b’ Mod N. (6.154)
Or, equivalently

a x bMod N = (a Mod N) x (b Mod N) Mod N. (6.155)
From this fact we get the formula

a*Mod N = a* ! x a Mod N = ((¢*~! Mod N) x (a Mod N)) Mod N.

(6.156)

Because a < N and a Mod N = a, this reduces to

a* Mod N = ((a*~! Mod N) x a) Mod N. (6.157)

Using this, it is easy to iterate to get the desired results. For N =371 and a = 2,
we have

X 0123 4 5 6 7 - 78 ... 155 156 157 158

Ha(x) 1 2 4 8 16 32 64 128 .- 211 --- 186 1 2 4

(6.158)

For N =371 and a = 6, we have

x o012 3 4 5 6 7 ... 13 ... 2526 27 28 ...

fosn(x) 1 6 36 216 183 356 281 202 --- 370 --- 62 1 6 36 ---

(6.159)

208 Algorithms

400
350
300
250
200
150
100

50

0

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 526

Figure 6.4. The output of f24371.

For N =371 and a = 24, we have

x o1 2 3 4 5 6 7 -+ 3 ... 77 7879 80

frasn(x) 1 24 205 97 102 222 134 248 --- 160 --- 201 1 24 205 ---

(6.160)
O
We can see the results of f»4 371 as a bargraph in Figure 6.4.
Exercise 6.5.3 Calculate the first few values of f, y for N = 247 and
(i) a=2
(i) a =17
(iii) a =23.
|

In truth, we do not really need the values of this function, but rather we need to
find the period of this function, i.e., we need to find the smallest r such that

fan(r)=a"Mod N = 1. (6.161)

It is a theorem of number theory that for any co-prime a < N, the function f,
will output a 1 for some r < N. After it hits 1, the sequence of numbers will simply
repeat. If f, n(r) =1, then

Jan(r +1) = fan(1) (6.162)

and in general

fan(r +5) = fan(s). (6.163)

6.5 Shor’s Factoring Algorithm

Example 6.5.5 Charts (6.151), (6.152), and (6.153) show us that the periods for
fo1s, fa1s, and fi315 are 4,2, and 4, respectively. Charts (6.158), (6.159), and (6.160)
show us that the periods for f; 371, f6.371, and fr4.371 are 156, 26, and 78, respectively.
In fact, it is easy to see the periodicity of f>4 371 in Figure 6.4. O

Exercise 6.5.4 Find the period of the functions f> 247, fi7.247, and f23.247. [|

The Quantum Part of the Algorithm. For small numbers like 15, 371, and 247,
it is fairly easy to calculate the periods of these functions. But what about a large
N that is perhaps hundreds of digits long? This will be beyond the ability of any
conventional computers. We will need a quantum computer with its ability to be in
a superposition to calculate f; y(x) for all needed x.

How do we get a quantum circuit to find the period? First we have to show that
there is a quantum circuit that can implement the function f, y. The output of this
function will always be less than N, and so we will need n = log, N output bits. We
will need to evaluate f, y for at least the first N? values of x and so will need at least

m=1log N> =21log N =2n 6.164
g g

input qubits. The quantum circuit that we would get will be the operator Uy, ,, which
we may visualize as

|x) Ix)
//m /m
Uy 6.165
iy Jas ly @ fon(x) ()
7

where |x,y) goes to |x,y© fin(X)) =[x,y ®a*Mod N).> How is this circuit
formed? Rather than destroying the flow of the discussion, we leave that technical
discussion for a mini appendix at the end of this section.

With Uy, ,, we can go on to use it in the following quantum algorithm. The first
thing is to evaluate all the input at one time. From earlier sections, we know how to
put x into an equally weighted superposition. (In fact, the beginning of this algorithm
is very similar to Simon’s algorithm.) We shall explain all the various parts of this
quantum circuit:

[0)
/m W /m /m 0 FTt /m E
Ufon
0)
i) i) T T i
() 1) l¢2) le3) [¢4) (6.166)

% Until now, we have thought of x as any number and now we are dealing with x as its binary expansion x.
This is because we are thinking of x as described in a (quantum) computer. We shall use both notations
interchangeably.

209

210 Algorithms

In terms of matrices this is
(Measure @ I)(QFT' @ I)(I ® Measure)Uy, ,(H®" ® 1)(0,,,0,), (6.167)

where 0,, and 0,, are qubit strings of length m and n, respectively.
Let us look at the states of the system. We start at

lgo) = [0, 0,). (6.168)

We then place the input in an equally weighted superposition of all possible inputs:

ZXE{W X, 0,,)

lp1) = 6.169
NeT (6.169)
Evaluation of f on all these possibilities gives us
X, fan(x)) _|x,a* Mod N)
er{(),l} _ ZXE{QJ} . (617())

v) = Tom Tom

As the examples showed, these outputs repeat and repeat. They are periodic. We
have to figure out what is the period. Let us meditate on what was just done. It
is right here where the fantastic power of quantum computing is used. We have
evaluated all the needed values at one time! Only quantum parallelism can perform
such a task.

Let us pause and look at some examples.

Example 6.5.6 For N =15, we will have n = 4 and m = 8. For a = 13, the state

|(p2> will be
10, 1) +11,13) +12,4) +13,7) + [4,1) + - - - + 254, 4) +|255,7)
. (6.171)
V256
O

Example 6.5.7 For N =371, we will have n = 9 and m = 18. For a = 24, the state
|@2) will be

0, 1) + |1, 24) + |2, 205) + |3, 97) + |4, 102) + - - - + 218 — 1, 242"~ Mod 371)

V218 '

(6.172)

a

Exercise 6.5.5 Write the state |¢;) for N =247 and a = 9. |

Going on with the algorithm, we measure the bottom qubits of |¢,), which is in a
superposition of many states. Let us say that after measuring the bottom qubits we
find

a* Mod N (6.173)

6.5 Shor’s Factoring Algorithm 211

for some X. However, by the periodicity of f, y we also have that

a* = a*" Mod N (6.174)
and

a* = a**” Mod N. (6.175)
In fact, for any s € Z we have

a* = a*™" Mod N. (6.176)

How many of the 2™ superpositions x in |¢,) have a* Mod N as the output? Answer:
1%].So

Z B Ix, a* Mod N)
a*=aX Mod N .

lps3) = o (6.177)
12)
We might also write this as
omjr—1 o
Z - lto + jr, a® Mod N)
lps) = —= (6.178)

[F] ’

where ¢ is the first time that a’ = ¢* Mod N, i.e., the first time that the measured
value occurs. We shall call #, the offset of the period for reasons that will soon be-
come apparent.

It is important to realize that this stage employs entanglement in a serious fash-
ion. The top qubits and the bottom qubits are entangled in a way that when the top
is measured, the bottom stays the same.

Example 6.5.8 Continuing Example 6.5.6, let us say that after measurement of the
bottom qubits, 7 is found. In that case |¢3) would be

13,7) 4+ 17,7) + [11,7) + [15,7) + - - - + [251,7) + 255, 7)

(%] '

(6.179)

For example, if we looked at the fi3 15 rather than the bargraph in Figure 6.3, we
would get the bargraph shown in Figure 6.5. O

212 Algorithms

g
5
4
3
3
14
1] - T T T T . . .
¢ 4 2 3 & § 6 F 8 & MW W @2 13 44 1

Figure 6.5. fi3 15 after a measurement of 7.

Example 6.5.9 Continuing Example 6.5.7, let us say that after measurement of the
bottom qubits we find 222 (which is 24° Mod 371.) In that case |¢3) would be

15,222) + |83, 222) + 161, 222) + [239,222) + - - -
%]

We can see the result of this measurement in Figure 6.6

(6.180)

O

Exercise 6.5.6 Continuing Exercise 6.5.5, let us say that after measuring the bot-
tom qubits, 55 is found. What would |¢3) be? [|

The final step of the quantum part of the algorithm is to take such a superposition
and return its period. This will be done with a type of Fourier transform. We do not

250

200

150

100

50

0

0 25 50 75 100125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Figure 6.6. f»4 371 after a measurement of 222.

6.5 Shor’s Factoring Algorithm

assume the reader has seen this before and some motivation is in order. Let us step
away from our task at hand and talk about evaluating polynomials. Consider the
polynomial

P(x) =ay+aix' + apx* + asx® + - +a,_1x" L (6.181)
We can represent this polynomial with a column vector [ag, a1, as, . .., a,—1]". Sup-
pose we wanted to evaluate this polynomial at the numbers xg, x1, X2, .. ., X,_1, i.€.,

we wanted to find P(xg), P(x1), P(x2), ..., P(x,-1). A simple way of performing the
task is with the following matrix multiplication:

T T TR R | P(xo) |
1 x x - x{ st m P(x1)
1 x x3 - x{ gt a P(x2)
= | (6182
1 xx x,% e x,{ e xZ_l ay P(xx)
1 xe x2, x) | Lana | [PGao) |

The matrix on the left, where every row is a geometric series, is called the Van-
dermonde matrix and is denoted V(xg, x1, X2, x,,—1). There is no restriction on the
type of numbers we are permitted to use in the Vandermonde matrix, and hence,
we are permitted to use complex numbers. In fact, we shall need them to be pow-
ers of the Mth roots of unity, wy (see page 26 of Chapter 1 for a quick reminder).
Because M is fixed throughout this discussion, we shall simply denote this as w.
There is also no restriction on the size of the Vandermonde matrix. Letting M = 2",
which is the amount of numbers that can be described with the top qubits, there is
a need for the Vandermonde matrix to be an M-by-M matrix. We would like to
evaluate the polynomials at 0° = 1, , ?, ..., ©™~!. To do this, we need to look at
V(o o', 0?, ..., oM7), In order to evaluate P(x) at the powers of the Mth root of
unity, we must multiply

1 ol w2 o w! e wM-1 ai P(a’l)
1 o? 22 L. w2 w2 M-1) a P(w?)
1 ok k2 ok kM=) a P(ok)
1 M1 pM-12 o (M=Dj (MM P(o™)

(6.183)

213

214

Algorithms

Figure 6.7. The action of DFT.

[P(0?), P(w'), P(e?), ..., P(&¥), ..., P(@™1)]T is the vector of the values of
the polynomial at the powers of the Mth root of unity.
Let us define the discrete Fourier transform, denoted DF T, as

1
DFT = —V(o’, o', 0?, ..., ™). (6.184)
7)
Formally, DFT is defined as

1 .
DFT[j, k] = ﬁwfk. (6.185)

It is easy to see that DF T is a unitary matrix: the adjoint of this matrix, DF T,
is formally defined as

1 i
DFT'[j k] = ik, (6.186)
J_ «/_
To show that DFT is unitary, let us multiply
(DFT » DFTY)[j, k] = Z(w” —ky = Z w k=D, (6.187)
If kK = j,i.e., if we are along the diagonal, this becomes
1 M M-1
2= Z 1=1 (6.188)
i=0 i=0

If k # j, i.e., if we are off the diagonal, then we get a geometric progression which
sums to 0. And so DFT » DFT = I.

What task does DFT' perform? Our text will not get into the nitty-gritty of
this important operation, but we shall try to give an intuition of what is going on.
Let us forget about the normalization \/LM for a moment and think about this intu-
itively. The matrix DF T acts on polynomials by evaluating them on different equally
spaced points of the circle. The outcomes of those evaluations will necessarily have
periodicity because the points go around and around the circle. So multiplying a col-
umn vector with DF T takes a sequence and outputs a periodic sequence. If we start
with a periodic column vector, then the DF T will transform the periodicity. Simi-
larly, the inverse of the Fourier transform, DF T, will also change the periodicity.
Suffice it to say that the DF T does two tasks as shown in Figure 6.7:

® It modifies the period from r to 2.
m It eliminates the offset.

6.5 Shor’s Factoring Algorithm

Circuit (6.166) requires a variant of a DF T called a quantum Fourier transform
and denoted as QFT. Its inverse is denoted QFT'. The QF T performs the same
operation but is constructed in a way that is more suitable for quantum computers.
(We shall not delve into the details of its construction.) The quantum version is very
fast and made of “small” unitary operators that are easy for a quantum computer to
implement.’

The final step of the circuit is to measure the top qubits. For our presentation,
we shall make the simplifying assumption that r evenly divides into 2. Shor’s actual
algorithm does not make this assumption and goes into details about finding the
period for any r. When we measure the top qubit we will find it to be some multiple
of ? That is, we will measure

m
w2 (6.191)
P
for some whole number 1. We know 2", and after measuring we will also know x.
We can divide the whole number x by 2 and get
x A2" A

om T om0 (6.192)
One can then reduce this number to an irreducible fraction and take the denomina-
tor to be the long sought-after r. If we do not make the simplifying assumption that
r evenly divides into 2™, then we might have to perform this process several times
and analyze the results.

From the Period to the Factors. Let us see how knowledge of the period r will
help us find a factor of N. We shall need a period that is an even number. There is a
theorem of number theory that tells us that for the majority of a, the period of f; x
will be an even number. If, however, we do choose an a such that the period is an
odd number, simply throw that a away and choose another one. Once an even r is
found so that

a’” =1Mod N, (6.193)

3 There are slight variations of Shor’s algorithm: For one, rather than using the H®™ to put the m qubits
in a superposition in the beginning of circuit (6.166), we could have used QF T and get the same results.
However, we leave it as is because at this point the reader has familiarity with the Hadamard matrix.

Another variation is not measuring the bottom qubits before performing the QF T'" operation. This
makes the mathematics slightly more complicated. We leave it as is for simplicity sakes.
However, if we take both of these variants, our quantum circuit would look like
0)

m QFT m i QFTT m E
Ut n (6.189)
10) . .
/

This would have been more in line with our discussion at the end of Section 2.3, where we wrote about
solving problems using

Translation — Calculation — Reverse Translation (6.190)

where QF T and QF Tt would be our two translations.

215

216 Algorithms

we may subtract 1 from both sides of the equivalence to get

& —1=0Mod N, (6.194)
or equivalently

Ni(@ —1). (6.195)
Remembering that 1 = 12 and x> — y? = (x + y)(x — y) we get that

N|(War +1)(Va —1) (6.196)
or

Ni(@? + 1)(a? - 1). (6.197)

(If r was odd, we would not be able to evenly divide by 2.) This means that any factor

of N is also a factor of either(a2 b +1)or (a2 3 1) or both. Either way, a factor for N
can be found by looking at

GCD((a? + 1), N) (6.198)
and
GCD((a? — 1), N). (6.199)

Finding the GCD can be done with the classical Euclidean algorithm. There is, how-
ever, one caveat. We must make sure that

a7 £ —1Mod N (6.200)

because if a2 = —1 Mod N, then the right side of Equation (6.197) would be 0. In
that case we do not get any information about N and must throw away that particu-
lar a and start over again.

Let us work out some examples.

Example 6.5.10 In chart (6.151), we saw that the period of f 15 is 4, i.e., 2* =
1 Mod 15. From Equation (6.197), we get that

15122 + 1)(2* - 1). (6.201)
And, hence, we have that GCD(5, 15) = 5 and GCD(3, 15) = 3. O

Example 6.5.11 In chart (6.159), we saw that the period of f;37; is 26, i.e., 6% =
26

1 Mod 371. However, we can also see that 62 = 63 =370 = —1 Mod 371. So we

cannot use a = 6. a

Example 6.5.12 In chart (6.160), we saw that the period of f» 371 is 78, i.e., 247 =

78
1 Mod 371. We can also see that 242 = 24%° = 160 # —1 Mod 371. From Equation
(6.197), we get that

3711(24% +1)(24% —1). (6.202)
And, thus, GCD(161, 371) = 7 and GCD(159, 371) = 53 and 371 = 7 % 53. O

6.5 Shor’s Factoring Algorithm

Exercise 6.5.7 Use the fact that the period of f; 247 is 12 to determine the factors
of 247. []

Shor’s Algorithm. We are, at last, ready to put all the pieces together and formally
state Shor’s algorithm:

Input: A positive integer N with n = [log, N1.

Output: A factor p of Nif it exists.

Step 1. Use a polynomial algorithm to determine if N is prime or a power of prime.
If it is a prime, declare that it is and exit. If it is a power of a prime number, declare
that it is and exit.

Step 2. Randomly choose an integer a such that 1 < a < N. Perform Euclid’s algo-
rithm to determine GCD(a, N). If the GCD is not 1, then return it and exit.

Step 3. Use quantum circuit (6.166) to find a period r.

Step 4. If r is odd or if a” = —1 Mod N, then return to Step 2 and choose another a.

Step 5. Use Euclid’s algorithm to calculate GCD((a% +1), N) and GCD((ag -
1), N). Return at least one of the nontrivial solutions.

What is the worst case complexity of this algorithm? To determine this, one
needs to have an in-depth analysis of the details of how U, y and QF T are im-
plemented. One would also need to know what percentage of times things can go
wrong. For example, what percentage of a would f, y have an odd period? Rather
than going into the gory details, let us just state that Shor’s algorithm works in

O(n® log n log logn) (6.203)

number of steps, where 7 is the number of bits needed to represent the number
N. That is polynomial in terms of #. This is in contrast to the best-known classical
algorithms that demand

2/3

O(e"” log”") (6.204)

steps, where c is some constant. This is exponential in terms of n. Shor’s quantum
algorithm is indeed faster.

Appendix: Implementing U, , with quantum gates. In order for Uy, , to be imple-
mented with unitary matrices, we need to “break up” the operations into small little
jobs. This is done by splitting up x. Let us write x in binary. That is,

X = X 1Xp_2 - - - X2X1 X0. (6.205)
Formally, x as a number is

X=X 12" 202" 2 4+ 1027 + 2 + Xo. (6.206)

217

218 Algorithms

Using this description of x, we can rewrite our function as

fun(x) = a* Mod N = 12"+ 202 ta2tn Mod N (6.207)
or

a2 x a7 o ox a® x a¥2 x a® Mod N. (6.208)
We can convert this formula to an inductive definition* of f, x(x). We shall define
Y05 Vis Y25+« o s Yu—2, Yn—1, Where y,_1 = f, ny(x): the base case is

Yo = a®™. (6.209)
If we have y;_1, then to get y; we use the trick from Equation (6.157):

Vi =Yj-1 X a“? Mod N. (6.210)

Notice that if x; =0 then y; = y;_1. In other words, whether or not we should
multiply y;_1 by a® Mod N is dependent on whether or not x; = 1. It turns out
that as long as a and N are co-prime, the operation of multiplying a number times
a* Mod N is reversible and, in fact, unitary. So for each j, there is a unitary operator

Ui vtod (6.211)

a

that we shall write as U ,;. As we want to perform this operation conditionally, we
will need controlled-U ,;, or CUazf, gates. Putting this all together, we have the fol-
lowing quantum circuit that implements f, y in a polynomial number of gates:

X0 X0
X1 X1
pY) X2
xn:—l : xn:—1
‘/’”—{ Uazo H Uazl H Ua22 Uazn—l m
(6.212)

Even if a real implementation of large-scale quantum computers is years away,
the design and study of quantum algorithms is something that is ongoing and is an
exciting field of interest.

References:

(i) A version of Deutsch’s algorithm was first stated in Deutsch (1985).
(ii)) Deutsch-Jozsa was given in Deutsch and Jozsa (1992).
(iii) Simon’s algorithm was first presented in Simon (1994).

4 This inductive definition is nothing more than the modular-exponentiation algorithm given in, say,
Section 31.6 of Corman et al. (2001) or Section 1.2 of Dasgupta, Papadimitriou, and Vazirani (2006).

6.5 Shor’s Factoring Algorithm

(iv) Grover’s search algorithm was originally presented in Grover (1997). Fur-
ther developments of the algorithm can be found in Chapter 6 of Nielsen
and Chuang (2000). For nice applications of Grover’s algorithm to graph
theory, see Cirasella (2006).

(v) Shor’s algorithm was first announced in Shor (1994). There is also a very
readable presentation of it in Shor (1997). There are several slight varia-
tions to the algorithm and there are many presentations at different lev-
els of complexity. Chapter 5 of Nielsen and Chuang (2000) goes through
it thoroughly. Chapter 10 of Dasgupta, Papadimitriou, and Vazirani (2006)
goes from an introduction to quantum computing through Shor’s algorithm
in 20 pages.

Every quantum computer textbook works through several algorithms. See, e.g.,
Hirvensalo (2001) and Kitaev, Shen, and Vyalyi (2002) and, of course, Nielsen and
Chuang (2000). There is also a very nice short article by Shor that discusses several
algorithms (Shor, 2002). Dorit Aharonov has written a nice survey article that goes
through many of the algorithms (Aharonov, 1998)

Peter Shor has written a very interesting article on the seeming paucity of quan-
tum algorithms in Shor (2003).

219

220

7

Programming Languages

The computer programmer is a creator of universes for
which he alone is the lawgiver ... universes of virtually un-
limited complexity can be created in the form of computer
programs. ... They compliantly obey their laws and vividly
exhibit their obedient behavior. No playwright, no stage di-
rector, no emperor, however powerful, has ever exercised
such absolute authority to arrange a stage or a field of battle
and to command such unswervingly dutiful actors or troops.
J. Weizmann, Computer Power and Human
Reason: From Judgement to Calculation

In this chapter we are going to describe quantum programming, i.e., the art and sci-
ence of programming a quantum computer. In Section 7.1, we briefly sketch what
it means to program a quantum computing device. Section 7.2 covers a simple ver-
sion of quantum assembler, based on the so-called QRAM architecture. Section 7.3
describes possible steps leading to higher-level programming languages and con-
structs. We conclude this chapter with Section 7.4, a short discussion on quantum
emulators.

7.1 PROGRAMMING IN A QUANTUM WORLD

As you are about to read this chapter, you have undoubtedly been exposed to com-
puter programming in a variety of flavors, and are perhaps already an accomplished
programmer of real-life applications. Programming a classical machine carries an
immediate, unambiguous sense. However, we are going to leave the familiar world
of binary chips, and learn how to program some as yet unspecified quantum hard-
ware. Thus, it is appropriate to spend a minute pondering what it can possibly mean
to write code for a quantum computing device.

As we all know, programming a computer means to tell it to carry out certain ac-
tions in a specific language that the machine understands, either directly or through

7.2 Quantum Assembly Programming

the intermediary of an interpreter. A program is a set of instructions, planning out
the behavior of the computing machine. Stripped of all its complexity, this set of in-
structions prescribes how to manipulate data in a controlled fashion, as summarized
by the following slogan:

DATA + CONTROL = PROGRAMMING |

Control here means that the program is built from a small set of basic instructions
and a set of control structures (conditionals, jumps, loops, etc.).

This scheme carries over to the world of quantum computers. We can assume in
the following that a machine sits in front of us; also, the machine is a computer that
operates at least partially at the quantum level. For the time being, you can imagine
that our computer comprises a quantum device, with an input area of quantum data,
represented by an addressable set of qubits, together with a set of prebuilt opera-
tions that can manipulate quantum data. These operations are of two types: unitary
operations, which will evolve quantum data, and measuring, which will inspect the
value of data. We shall also assume that we can assemble more and more com-
plicated operations out of the basic ones. Loosely speaking, the set of instructions
that specify such assemblages will be our quantum programs. Here is the updated
“quantum” slogan:

| QUANTUM DATA + CONTROL = QUANTUM PROGRAMMING

Let us now imagine that we have a concrete problem to solve, where additional
quantum speedup might be highly beneficial, and that after some pondering we have
come up with some effective quantum algorithm, perhaps similar to those we have
already encountered in Chapter 6.

A basic ingredient is still missing, namely, a programming language for writing
down our instructions. Such a language will enable us to control the quantum com-
puting device and implement our quantum algorithm. !

7.2 QUANTUM ASSEMBLY PROGRAMMING

Nowadays, there is a plethora of programming languages for classical machines.
Most programmers write their source code in one or more of the high-level pro-
gramming languages, such as C++, Perl, or Java. Quite often a developer ignores
the architecture of the machines he/she is working with, or how the underlying op-
erating system will handle the requests of the program. There is an obvious advan-
tage in this state of affairs: we can concentrate on the task at hand, and simply let

! We have deliberately separated algorithms from the language in which they are implemented to em-
phasize the fact that the focus of quantum programming is not quantum algorithms per se, but the way
they are expressed in a quantum language (thus, we can think of the description of the algorithms in
Chapter 6 as given in some sort of quantum pseudo-code). In real life, though, there is a tight synergy
between algorithm design and the choice of a specific programming language, as every experienced
software engineer knows well: a good language’s choice fosters good algorithm’s design.

221

222

Programming Languages

the interpreter/compiler take care of what goes on under the hood. It should be
remembered though that somebody has to have the know-how necessary to build
such interpreters—compilers; simply, this expertise has been confined to a relatively
small subgroup within the vast community of software developers. We should bear
in mind, though, that things were not always this way: only a few decades ago assem-
bler was pretty much the only game in town. Before those times, the only option was
crude machine language.’

In our exploration of quantum programming languages we shall not begin with
raw quantum machine language, a territory at the frontier between quantum hard-
ware and quantum software; we touch this area a bit in Chapter 11. It goes without
saying that to be able to program at the true quantum machine level, a vast amount
of know-how in the fields of quantum physics and quantum engineering is required.
The future quantum developer will not be expected to have such an in-depth exper-
tise, just as modern-day programmers have for the most part a scanty knowledge of
hardware issues. Furthermore, the need for a quantum programming language that
is to some extent machine independent is rather obvious: the algorithms presented
in Chapter 6 have clearly nothing to do with specific physical implementations. We
should thus be able to specify them much in the same way as we are used to with
classical algorithms. To do all these we need, at a minimum, a quantum assembler.

Although we can describe a quantum assembler without entering into the speci-
fics of quantum hardware, we still need to select an architecture for the underlying
quantum machine.’

There are at least three quite different, although provably equivalent, candidate
architectures for quantum computation.* In Chapter 5, as you may recall, quantum
gates were introduced. By combining quantum gates, one ends up with a computa-
tion model known as quantum circuits. Here is how:

m The first ingredient is an input device, through which we can feed quantum data.
m The second ingredient is a set of basic gates. Gates can be applied sequentially
and in parallel, forming an acyclic-directed graph known as quantum circuit.

m The third ingredient is a device that enables us to carry out measurements. The
result of this operation will be a sequence of standard bits that can be read off

and further displayed, stored, and manipulated.

For a description of quantum circuits, their graphical notation, and some examples,
you can refer back to Chapters 5 and 6.

We could describe a quantum assembler using quantum circuits as our back-
ground architecture. Notice that in the model we have just presented, measuring oc-
curs only at the very end of the computing process. This is not a theoretical limitation

()

Assembler and machine language are often confused. Indeed, for most practical purposes, they can be
safely identified. Nevertheless, assembler represents a minimum of abstraction: register have names,
and so do basic machine operations, such as ADD, PUSH, and REMOVE.

It is exactly the same in the classical case. In any compiler design class, finite state machines, registers,
heaps, stacks are introduced in order to illustrate what happens in response to specific commands.

As a matter of fact, there are at least four: the last one is described in Raussendorf and Briegel (2001).
In this model, there is no network involved. Instead, a cluster of entangled qubit is the starting point.
Information is extracted via a sequence of one-qubit measurements. We are indebted to Stefano Bet-
telli for pointing this out.

w

7.2 Quantum Assembly Programming 223

Control for guantum

operatin;lls
Classical Quantum
computer processor
(Master) (Slave)
Results of
measurement

Figure 7.1. A simplified QRAM machine.

of the quantum circuits architecture, as it can be formally shown that measurements
can always be pushed to the end. However, it is perhaps a bit awkward from the
programming standpoint, as developers generally wish to inspect their variables any-
where during the computation.

As a second option, we could choose the quantum Turing machine model, which
is presented in Chapter 8. These are precisely the quantum analog of Turing ma-
chines. Much like classical Turing machines, this model is very convenient for dis-
cussing quantum complexity classes and other theoretical computer science issues,
but is not conducive to the design of algorithms or programming languages.

A third more convenient alternative, which we shall therefore adopt throughout
this chapter, is known as Quantum Random Access Memory Model (QRAM). The
QRAM is made of the following parts:

B A classical computer, playing the role of the master.
B A quantum computing device (either internal or external), that can be accessed
by the master computer on request.

Figure 7.1 is a simplified sketch of a QRAM machine.

The idea behind the QRAM is that the programmer writes classical code in a
standard classical language, say, C. When she needs the extra quantum power, she
will add a few lines of quantum assembler to her code.” This g-assembler is the
way to access and use the quantum device. Notice that the programmer is not re-
quired to know anything about the internals of the quantum device. There is no
need to know how qubits are physically stored, initialized, manipulated, or mea-
sured. The only information she may need concerns the capacity of the device, i.e.,
the maximum size of available quantum memory. Everything else will happen by
means of a Quantum Hardware Interface, or QHI, which will translate assembler
commands issued by the master into explicit actions performed by the quantum
device.

As you have certainly not failed to notice, the description of the QRAM model
has been very vague (there are just two empty boxes in the picture). Let us flesh

5 This concept is not far-fetched: think of a graphic developer programming a sophisticated 3D game.
When she needs to carry out computationally intensive operations, such as fast matrix multiplications
for repositioning her objects in the scene, she can take advantage of a graphic accelerator via a few
snippets of code embedded in the main program.

224

Programming Languages

s

@@ |o
DD |2
@D

000000 O

IIIIIIIE

T

Q0 O 0OCOO00 O 00

- i

Figure 7.2. A 9-qubit register.

{

it out a bit. .. The first box is a classical computer. Inside the master computer, the
control register will be used to store g-assembler instruction (after all, the instruc-
tions themselves are encodable as sequences of bits!). When the control pointer is
on one or the other of the quantum instructions, the master will use the quantum
hardware interface to push it over to the servant device. What is inside the second
box? Essentially two things: a set of quantum data storage registers (we are going to
introduce them in a minute) and utilities that apply operations on the storage.

Note: Let us recall in passing that the no-cloning theorem will prevent quantum
assembler from having copying instructions. There is no way to copy the content of
aregister to another one, a familiar and pervasive operation in ordinary assemblers.

The first thing our programmer will do is to ask the quantum device through
the quantum hardware interface to initialize an addressable sequence of qubits.
These transactions happen through an interface known as the quantum register, or
q-register.

Definition 7.2.1 A quantum register is an interface to an addressable sequence of
qubits (see Figure 7.2). Each q-register has a unique identifier by which it is referred.

For the purpose of this discussion, we can safely think of the quantum register as
an array of adjacent qubits. Where and how they are actually stored in the quantum
chip is irrelevant in this context.

What is the actual size of the register, and how many registers are available?
Both questions will be left unanswered, as they depend on the progress made in
quantum hardware. For the time being, we can think of each register as having a
fixed size, and a numerical code, by which it can be addressed.

After the quantum register has been initialized and manipulated, the program-
mer can issue a command that will measure selected portions thereof. The quantum
device will perform the requested measurement, and it will return a classical value
that can be displayed and/or stored somewhere in the main program (e.g., as an
array of classical bits). This is depicted in Figure 7.3.

The loop-back arrow in Figure 7.3 means that the same pipeline can be repeated
as many times as needed.

As we have already mentioned, in this model measuring is interleaved with other
commands: our quantum programmer can ask at any time after initialization for the
value of an arbitrary section of the register.®

% With one important caveat: whenever she observes parts of the register, she destroys its state.

7.2 Quantum Assembly Programming 225

Classical | —5 |"Ouantiza:ion'|:>| Manipulation |—i> | Measurement -—:> Classical

data data

ﬁ\ﬁh_ __—_::::::/j

perhaps
repeat

Figure 7.3. Flowchart of quantum control.

We are now armed with the necessary understanding to begin the design of a
quantum assembler for the QRAM model. The toy assembler we are going to de-
scribe is not standard in any way.’ It is here just for illustration purposes: real-life
g-assemblers may differ from the one in this section.® For a thorough presentation
of a quantum assembler in a real-life QRAM setting, you can read the article by
R. Nagarajan, N. Papanikolaou, and D. Williams (2005).

Let us begin. In the following we shall denote by the letters R1, R2, ..., the iden-
tifiers (numerical codes) of the available g-registers. We shall also assume, for the
sake of our discussion, that all registers are of size 8, i.e., they can store the quantum
analog of a byte, a qubyte. The prefix R will stand for the code of an unspecified
g-register.

We are now going to list the set of basic instructions comprising our language.
The QRAM architecture enables the calling program to push each individual in-
struction over to the quantum chip one at a time.

We need a way to initialize g-registers. More specifically, we need to pass a bit
array from the main program to a given q-register, and ask the quantum device to
initialize it accordingly.

B Initialize the register R:
INITIALIZE R [INPUT]

The optional INPUT is a classical array of bits, whose size matches the size of the
register (i.e., a byte). If it is not specified, it is assumed to be filled with zeros.

Example 7.2.1 The example below initializes a register R of eight qubits; it then
reinitializes it using as input the bit array B = [00001111].

var B=[00001111] // before invoking quantum assembler

INITIALIZE R1
INITIALIZE R1 B

O

We shall assume that the default initialization procedure “cools off” all the
qubits to the ground state |0). In other words, if we initialize a q-register of size

7" As a matter of fact, we extracted it from a few extant proposals of imperative quantum languages, by
discarding their high-level constructs.

8 They almost certainly will, by taking advantage of a specific target hardware. The same happens in the
classical case. There is no universal assembly language, but a family or closely related languages, each
geared toward a specific platform.

226

Programming Languages

S, the joint state is |00000). If, on the other hand, we do provide an INPUT such as
[00101], the system will take care of initializing our register to [00101).

Let us proceed. Once we have a register, we can address its individual qubits
for manipulation. For instance, R[0] will denote its first qubit, and so on. As a con-
venience, though, we shall enrich our assembler with the capability of selecting a
subregister variable, which we can use later on for our needs. Subregister variables
will be denoted by the prefix letter S.

m Select from R the subregister made up of NUMQUBITS qubits starting at
R[OFFSET]. Store the address in the variable S.
SELECT S R OFFSET NUMQUBITS

Example 7.2.2 We can iterate the instruction, extracting a subregister from an ex-
isting one:

INITIALIZE R1
SELECTSR123

In this fragment of quantum assembler we have initialized a quantum register, and
we have then extracted a subregister formed by the qubits of index 2, 3, 4 and rep-
resented by the variable § (notice that we assume indices starting from 0, just like C
arrays). O

Exercise 7.2.1 Consider the snippet of program:
INITIALIZE R1 [01110001]

SELECT S1R124

SELECT S2S102

Which qubits of R1 have we selected in S2? |

As we have already mentioned, the second essential ingredient is the basic uni-
tary transformations, known as gates (we have dedicated Section 5.4 to quantum
gates; our reader is referred there for details):

GATES = (G, G, ..., G,_1}. (7.1)

Note: Different choices’ of basic quantum gates can be made, as long as the set
GATES is a universal set of gates, i.c., it generates a// unitary transformations on
a finite-dimensional Hilbert space via successive applications of composition and
tensoring. In practice, gates like Hadamard that are constantly used should be part
of the primitives, so GATES does not necessarily have to be a minimal generating
set (redundancy is allowed).

? In the design of real-life quantum assembler, the choice would be dictated, at least in part, by which
gates are easily implementable on the target hardware.

7.2 Quantum Assembly Programming

In the following exercises and examples we shall adopt the following set of
gates:

GATES = {H, R, I,, CNOT)}, (7.2)

where H, Ry, I,, and CNOT denote the Hadamard, the phase shift by an angle 6,
the n x n identity matrix, and the controlled-NOT gate, respectively.

® The basic instruction will look like
APPLYUR

where U will be a suitable unitary gate matching the size of the register R.

Most classical assemblers have some support for macros, and here we shall take
the same course. We need ways to build new unitary transformations by concatenat-
ing more basic building blocks and by taking inverses (Remember: Unitary trans-
formations are closed by composition and inverse!). The resulting transformation is
given a name, and each time we intend to use it, it will be expanded inline by the
assembler into its constituents. Let us now see how:

m The composition operation, that executes sequentially from right to left two uni-
tary transformations U; and U,, and saves the result in a variable U:
U CONCAT U; U,

m The tensor product (alias the parallelization) of operations: U is the result of
tensoring U; and U;:
UTENSOR U; U,

m The inverse: U is the result of taking the inverse of U; (i.e., the transformation
that “undoes” U;):
U INVERSE U;

Note: Why the identity matrix? The simple reason is that it is needed to pad uni-
tary transformations to the appropriate size. Suppose, for instance, that you have
a g-register of four qubits, but you want to manipulate only the first two, via, say,
Hadamard. What you are going to do is to tensor H with I, which leaves the third
and fourth qubit unchanged.

Example 7.2.3 Let us express some simple unitary transformations in our assem-

bler:

U; CONCAT R: Rz
U, CONCAT U; Uy
U3z CONCAT U H
Which unitary transformation corresponds to Us? We just follow the sequence
of matrix operations:

U3=U2*H=(U1*U1)*H
=(R%* R%)*(R%* R%)*H
= Rz * Rz * Rz x Rz » H. (73)
4 2 4 2

227

228 Programming Languages

We are now to going to replace each gate with the corresponding matrix:

Us = —
V200 ei|lo e3|]o ei|]lo 3|1 -1

070711 0.70711
= . (7.4)
0.70711i 0.70711i

It is your turn: in the following exercise we are going to use tensoring.

Exercise 7.2.2 Here is a snippet of quantum code:

U; TENSOR CNOT CNOT
U, CONCAT U, Uy

Which unitary transformation corresponds to the variable U,? On how many
qubits does it act? [|

Exercise 7.2.3 Write down the assembler code that generates the following unitary
transformation in terms of the basic gates set GATES:

1 00 O
0 -1 0 O
U= . (7.5)
0 01 0
0 00 -1
What is the action of U on a 2-qubit subregister? |

Let us move forward. We need to measure a register:

B Measure the register R and put the results in the classical variable RES, pointing
to a bit array:
MEASURE R RES

Example 7.2.4 Here is a fragment of a program in quantum assembler:
INITIALIZE R 2

UTENSORHH

APPLY UR

MEASURE R RES

7.2 Quantum Assembly Programming 229

We can now read the bit array RES. What is the chance that we find the sequence
11?7 Let us read the code one line at time.

(i)
(ii)

(iii)

(iv)

The first instruction allocates a 2-qubit register named R and initializes it
to |00).
The second line creates a unitary matrix U of size 4 x 4:

11 1 1

" I A |
U=H®H==x (7.6)

2 011 1 41 -1

1 -1 -1 1

The third line applies U to R:

11 1 1 1 :

1]t =1 1 =1]]o : 1 1 1 1

5 e :§|00>+§|01>+§|10>+§|11>.
1 1 -1 1|0 :
1 -1 -1 1|0 :

(7.7)

Finally, the last line measures the g-register R; and stores the result in
the bit array RES. What is the probability that RES = |11)? We simply
calculate it from the coefficient of |11):

1 1
|§|2 =3= 0.25. (7.8)

This is no surprise: the parallel application of H to the two qubits puts the
register in a balanced superposition of the four basic states.]

In the last example, measurement was the last step. The following exercise shows
a bit of code where gates and measurement are interleaved, and measurement is
restricted to a subregister.

Exercise 7.2.4 Consider the quantum assembler code:

INITIALIZE R 2
UTENSORHI,
APPLY UR
SELECTS1R 01
MEASURE S1 RES
APPLY CNOTR
MEASURE R RES

230

Programming Languages

We can now read the bit array RES. What is the chance that we find the bit
sequence 10? |

So far, there is a glaring omission: no control structures, such as the familiar
conditional jumps. The reason is that they are dispensable. If our programmer
wants to implement a if-then—else, she can issue a measurement statement, get
back a bit array, and use a classical conditional structure (if, while, case, etc.) to
branch out. For instance, going back to the last exercise, she could add a statement
such as

IF(RES==[10]) THEN APPLY CNOT R ELSE APPLYHR

The exact syntax of the conditional would depend on the classical “host” lan-
guage, i.e., the language she adopts to run the master machine.

Exercise 7.2.5 Go back to the last exercise. After initialization (first instruction),
add a while loop that includes all other instructions in the while block and stops only
when RES = [10]. Is it guaranteed that the program will always terminate? |

What we have presented so far is a rather minimalist g-assembler: it contains
only one data type, namely quantum binary strings. However, we have accomplished
what we set forth to do: we now have a quantum language that can express quantum
algorithms (try your hand with the following exercise).

Exercise 7.2.6 Write a program that implements Deutsch’s algorithm described in
Chapter 6.]

In the next section, we investigate how we could expand it with more sophisti-
cated constructs.

Programming Drill 7.2.1 Write a lexical analyzer for the quantum assembler de-
scribed in this section. You can use a large variety of tools, including Lex on UNIX,
Bison on Linux, JavaCC for Java, or Parsec for Haskell.

7.3 TOWARD HIGHER-LEVEL QUANTUM PROGRAMMING

The quantum assembler described in the last section is sufficient, at least in princi-
ple, to implement quantum algorithms such as the ones seen in Chapter 6. Just like
everything in classical computing is ultimately represented as a sequence of bits,
in quantum computing the basic constituents are sequences of qubits. However, in
classical computation we have a vast array of languages that provide several built-in
data types, such as integers, floating numbers, character strings, and the capability
of creating new user-defined types (such as structures in C, or objects in C++, Java,
or Perl). It would be great if the same happened here.

Indeed, even from the standpoint of the algorithms we presented, this need
emerges quite naturally: Shor’s algorithm, for instance, is about integers, not bit

7.3 Toward Higher-Level Quantum Programming

sequences. An implementation in quantum assembler would entail representing in-
tegers as sequences of bits, and thus as sequences of qubits (via the usual identi-
fication of 0 with |0) and of 1 with [1)), all done explicitly by us. Similarly, if one
wants to add two integers, one must find a unitary transformation that corresponds
to addition, and moreover write it as a sequence of basic gates.

To gauge what is involved here, it is worth exploring how classical operations
can be implemented as unitary transformations. Let us start with a boolean map

f:{0,1}" — {0, 1}", (7.9)

in other words, a map from a sequence of n bits to itself. We intend to produce a
map

Us:C* — C%, (7.10)

such that its “restriction” to regular bit sequences, when we identify the bit sequence
b; ... by with the corresponding qubit sequence |b;) ... |bn) = |b; ... by),is precisely

If f were an invertible map, it would have been easy: in this case, it suffices to
extend f linearly by defining Uy as

Us(co(10...00) 4+ ¢1]0...01) + - - + cpi[1.. . 11))
= co(| £(0...00)) +c1 F(10...01)) 4 - - + s £(I1 ... 11)). (7.11)

As you can easily check, Uy is not only linear, but unitary, and thus within reach of
our quantum device.

Exercise 7.3.1 Verify that f invertible implies that Uy is a unitary map. []
Unfortunately, if f is not invertible, Uy fails to be unitary.

Exercise 7.3.2 Provide a simple example of the fact that a noninvertible f gener-
ates, following the recipe given in Equation (7.11), a nonunitary map. [|

Luckily, things are not so bad. There is a way around, that comes at some price,
as it requires extra quantum memory. Let us see how it works. The basic idea is
that we can turn an irreversible function from bit sequences to bit sequences into a
reversible one, by carrying the input along with the result:

Uy 1x)ly) —)| f(x) @). (7.12)
In particular, for y = 0, we get

Uy 2 [x)]0) — [x)] f(x) © 0) = [x)] f(x)). (7.13)
If x4 # x,, where xq, x; are two bit sequences of the same length n,

Ur(1x1)[0)) = [x1)| f(x1)) # [x2)| f(X2)) = Us(1x2)]0)). (7.14)

231

232

Programming Languages

Uy is injective on the standard basis padded with zeros. As a matter of fact, Uy
is reversible on all inputs.

Exercise 7.3.3 Prove that Uy is a reversible map from 2?" to itself. |

We can thus extend it by linearity on a generic input, using the recipe given in
Equation (7.13).

The map Uy associated with the function f should sound familiar to you if you
have gone through Chapter 6: it is indeed the same map that was used to represent
classical functions in many of the algorithms.

Observe that our input register has doubled its length: each time we wish to
apply f to an input |x), we must pad it with a sequence of Os as long as the input
itself.

A simple example will illustrate the foregoing.

Example 7.3.1 Consider the boolean function f given by the following table:

x o fx)

00 00
01 00 (7.15)
10 o1
111

The function f is clearly not invertible. Let us turn it into a reversible one.

xy [f(X)@yx xy [f(X)@yx

0000 0000 1000 1001

0001 0001 1001 1000

0010 0010 1010 1011

0011 0011 1011 1010 (7.16)
0100 0100 1100 1111

0101 0101 1101 1110

0110 0110 1110 1101

0111 0111 1111 1100

7.3 Toward Higher-Level Quantum Programming

Now, we can simply extend the foregoing chart by linearity to obtain the desired
U f:

U;(c0l0000) + ¢1]0001) + - - - + e16]1111)) = c6]0000) + ¢1]0001) + - - - + c16/1100).
(7.17)

To compute f on the input 11, we simply “pad” it with the appropriate number
of zeros (in this case two) and set our register to [1100). Now, we apply Uy to it and
get 1011. Finally, we measure the subregister given by its first two indexes, obtaining
01, as desired. O

It may seem as an idle and a bit silly exercise to go through this roundabout way,
simply to carry out classical computation which could be safely performed on a clas-
sical machine in a snapshot. But it is not so: think again the role that Uy played in
Deutsch’s algorithm. We can use it to compute f on a superposition of classical in-
puts. For instance, if f stands for some arithmetical operation, we can now perform
it on all classical inputs, in one single step: applying Uy.

Exercise 7.3.4 Consider the set of positive integers {0, 1, ..., 15}. In other words,
the numbers that one can express with four bits. Write the unitary map that corre-
sponds to the map f(n) =n+2,if n < 13, and f(n) = n, otherwise. [|

The trick described earlier has two main costs:

B The reversibilization operation we performed by hand requires explicit calcula-
tions of f on all the input values, and the table grows exponentially in the size of
the input. That is, of course, unacceptable because such a preprocessing would
erode all the benefits of quantum speedup (not to mention the unpleasant fact
that to carry out simple arithmetical operations via Uy, we must already compute
all f’s values!).

m The extra qubits one needs to allocate. As it stands, it could create a big quantum
memory issue, in case we needed to carry out several operations in a row.

As for the first issue, there are effective ways to turn an irreversible function into
a reversible one in polynomial time, at least for certain function classes, without
explicit calculations. The key idea is that one analyses the function in terms of its
recursive definition, and uses that representation to rebuild it as a reversible one. We
shall not pursue this fascinating topic here, but you can find some useful references
in Bennett (1988).

Concerning the second item, there is an elegant solution, due to Bennett, known
as the quantum scratch pad. Here is how it works: suppose you apply the function g
to the output of function f:

%, 0,0) = |x, f(x),0) — |x, f(x), g(f(x))) = Ix, 0, g(f(x)). (7.18)

Notice that in the last step we have just “undone” |x, f(x)) by applying the inverse
of Ur. Now, the unused zero qubit can be recycled for future computations.

233

234

Programming Languages

Exercise 7.3.5 Try to use the scratch-pad trick to compute f o f where f is as in
Exercise 7.3.4. |

What have we learned? Suppose that we want to represent a classical data type
such as Int, and its basic operations, on our quantum device. The steps involved are
as follows:

m Represent the data type in the usual way, as bit sequences.

B Represent each of its operations as a unitary map, by turning it first into a re-
versible map.

B Analyze the unitary operations obtained in the previous item as quantum cir-
cuits, i.e., decompose them in terms of quantum gates.'’

The use of our quantum assembler makes these steps entirely our responsibil-
ity. A bit cumbersome, isn’t it? We can then envision future quantum languages
where all this happens under the hood, at the compiler level. For instance, our
programmer declares a classical variable of type integer and initializes it to some
value:

Int n= 3. (7.19)

She then decides to “quantize” it, so she creates a “quantum integer value” gn, of
type Qlnt, and sets it equal to n. She then applies some gate G to gn, measure it,
and stores the value back into 7.

QIntgqn=n

APPLY G ¢qn
MEASURE gnn

We are going to conclude this section with a very sketchy survey on where we ac-
tually are, as far as designing higher-level quantum languages. The interested reader
can consult the three excellent surveys by P. Selinger (2004b), by J. Gay (2005), and
one by R. Riidiger (2007) for fairly comprehensive views.

Classical higher-level languages are classified into broad groups, the broadest
and most famous one being imperative programming. This class contains most
of the languages that are commonly used in the workplace. A typical program
is mainly a sequence of commands, interspersed with flow control statements. C,
C++, Java, PERL, Python, and many, many others, all fit within this programming
paradigm.

Some of the first proposals of quantum languages have been inspired by the
imperative model. A typical example is QCL, written by Bernhard Omer. QCL has
a C-like syntax, augmented by a new QReg type, which lets the programmer access
quantum registers. There is an important difference with respect to the registers
we have encountered in the previous section: here, registers are variables. Just like

10 We have already mentioned that only certain classes of functions can been effectively turned into re-
versible maps and realized as quantum circuits. This point is critical, else the potentially huge benefits
of quantum speedup could be easily eroded by these preprocessing steps.

7.3 Toward Higher-Level Quantum Programming

in classical high-level languages, you do not need to specify any concrete memory
location. You just say: “give me a register of size N,” and the compiler takes care of
allocating quantum memory. In the same spirit, in QCL unitary gates are operators
(they look and feel like C functions). A QCL developer can write familiar classical
C-like code, interspersed with instantiation and manipulation of g-registers.

quregR[4]; // 4-qubit quantum register

H(R[2]); // Hadamard operation on the third qubit of the register

QCL is more than quantum assembler with memory management, as it sup-
ports user-defined operators and functions, much in a same way as in modern
classical languages. Here is a simple example:

operator myop (qureg q)

H(q); // Hadamard transform on q

Not(q); / the NOT gate on q

CPhase(pi, q); // Controlled phase shift on q; it rotates it if ¢ = 1111...

QCL is not just a specification of a quantum language. An implementation in C++
exists and is downloadable at Omer’s Web site.

Programming Drill 7.3.1 Download and install QCL, and then write an implemen-
tation of Grover’s algorithm.

An imperative quantum language akin to QCL is Q, by S. Bettelli and others. Q
takes the stance of promoting operators to full-fledged objects, like in C++. Unlike
QCL, which is in a sense self-contained, Q looks like an extension of C++, enriched
by QRegisters and QOperators.

For a comparison of QCL and Q, you can read the joint interview of Omer and
Bettelli (the reference is in Ruidiger (2007), where they expound their guiding design
philosophies.

In spite of their popularity, imperative languages are by no means the only op-
tion available; for instance, Prolog is a language that belongs to the so-called logic
programming class, where a program is a specification of properties and relations in
a fragment of first-order logic, and then queries such as: Is it true that the variable a
enjoys the property P? As of the time of this writing, no quantum logic programming
language has been proposed yet, but things may change in the future.

A third subclass is known as functional programming. Here a program can be
seen as the specification of a function. The program will be provided with an accept-
able value for the function and it will compute the return value. The prototypical
example is LISP, a language you may have met already if you have taken a class on
expert systems. There are many other functional programming languages, such as

235

236 Programming Languages

l

Allocate qubits
p=0, g=0

} !

Figure 7.4. A snippet of a Quantum Flow-
chart (QFC) program.

ML, Miranda, or Haskell. These languages are very powerful and extremely flexible,
but not very popular in the industrial world.!! Their chief users are academicians
and industrial researchers working in the areas of theoretical computer science and
artificial intelligence. It thus comes as no surprise that some of the first proposals
for a high-level quantum programming language are functional languages. There
are, however, other deeper motivations: functional languages, classical or quantum,
lend themselves nicely to compile-time-type checking and correctness proofs. For
languages in this category, there is an extensive body of work on denotational and
operational semantics, that can be used as a baseline for the designer of new quan-
tum languages.

The “quantum slogan” at page 221 says that quantum programming is quantum
data plus control. But, what kind of control? Peter Selinger (2004b) has proposed a
functional quantum programming language, known as QFC, which combines quan-
tum data and classical control. Selinger’s variant of the quantum slogan is

| QUANTUM DATA AND CLASSICAL CONTROL |

Control is specified using a flowchart type of syntax. Figure 7.4 is a flowchart of
a program.

' Though things are rapidly changing: the newly popular Ruby is an OOP imperative language which
incorporates some features of the functional paradigm (most notably the capability of writing meta-
programs. The web framework Rails, entirely written in Ruby, is based on Ruby’s meta-programming
features). We expect that mixed languages similar to Ruby will play an important role in the future of
IT, as programs will process not only data, but other programs as well.

7.4 Quantum Computation Before Quantum Computers

The same program in text syntax is

new qbit p, q : = 0 // initializes two qubits to |0)

q*=H //multiply the second qubit by Hadamard

measure q then //start conditional: measures second qubit

{p *=H} //if the result is 0, apply Hadamard to the first qubit
else //if the resultis 1

{p *=NOT} //flips the first qubit

Exercise 7.3.6 Download Selinger’s paper on QFC, and write down a simple pro-
gram that (1) initializes three qubits to zero, (2) applies Hadamard to the first one,
and (3) measures the first qubit. If it is zero, it flips the second qubit; else, it maxi-
mally entangles the second and the third. |

In classical functional programming, the distinction between data and control is
blurred: programs themselves can be handled as data, naturally generating metapro-
gramming patterns (i.e., programs that manipulate other programs, or even them-
selves). Indeed, this feature is one of the strongest edges of the functional paradigm.
Recently, Grattage and Alterlich have proposed a new functional quantum pro-
gramming language, known as QML (see Grattage and Altenkirch, 2005), for which
the claim is made that both data and control are quantum.'?

7.4 QUANTUM COMPUTATION BEFORE QUANTUM COMPUTERS

For the time being, there are no quantum computers available aside a few exper-
imental devices that operate on very small qubit registers (more on this in Chap-
ter 11).

Nevertheless, things are not too gloomy: we can still emulate quantum comput-
ers on classical ones, as long as their quantum data storage is small. As we will learn
in Chapter 8§, in principle quantum machines can be successfully simulated by Turing
machines, and thus by ordinary computers. Unfortunately, this emulation grows ex-
ponentially in the size of the qubit register, making it soon unfeasible. However, if
we work with programs involving only a small amount of qubits, a successful emu-
lation can be run on your desktop.

What is actually required to build a quantum emulator from scratch? As we have
seen in Section 7.2, a quantum computing device consists of quantum registers and
operations acting on them. To simulate a quantum register, we first need to simu-
late individual qubits. Now, via the standard representation, a qubit is just a (nor-
malized) pair of complex numbers. Some languages, such as MATLAB or Maple,
already come equipped with complex numbers (see the MATLAB Appendix for a
tutorial on using MATLAB for quantum computing emulations). With others, you

12' To which extent the claim is correct is, at the time of writing, debatable. On the one hand, QML does
provide new conditional constructs, such as the new “quantum if” statements. On the other hand, such
conditional constructs cannot be nested, restricting considerably the notion of control as it commonly
intended.

237

238 Programming Languages

can either use suitable external libraries or define them yourself. A quantum reg-
ister of size N can be represented as an array of 2V complex numbers, whereas a
unitary transformation of the register will be represented by a 2V x 2V matrix (as
you can imagine, things get out of hand pretty fast!).

You can find a list of numerous quantum emulators at the Quantiki Web site
http://www.quantiki.org/wiki/index.php/Main_Page. You just have to choose the
language. Even better, you can build your own!

Programming Drill 7.4.1 Design and implement a quantum computer emulator in the
language of your choice. (Hint: If you have done consistently all other programming
drills, you are almost done.)

References: QRAM was first introduced in Knill (1996). According to the survey
on quantum programming languages by Peter Selinger (2004a), Knill’s paper is also
the first known paper on quantum programming.

These are nice survey articles on quantum programming: Bettelli, Calarco, and
Serafini (2001), Gay (2005), and Selinger (2004a).

http://www.quantiki.org/wiki/index.php/Main

Theoretical Computer Science

The meaning of the world is the separation of wish and fact.

Kurt Godel, quoted in Hao Wang’s A Logical
Journey: From Godel to Philosophy, page 309"

In a sense, theoretical computer science is uniquely qualified to study quantum com-
puting. After all, Alan Turing and the other founders of theoretical computer sci-
ence studied formal computation long before engineers actually produced a real-life
computer. At present, large-scale quantum computers are not a reality yet. Never-
theless, the theoretical analysis of quantum computability and complexity is well on
its way.

In Section 8.1, we start with a quick review of some of the basics of determinis-
tic and nondeterministic Turing machines and the complexity classes that they en-
gender. However, we shall discuss them in a way that is easily generalizable for
our purposes. Section 8.2 moves on to probabilistic Turing machines and their zoo
of complexity classes. Our main objective is found in Section 8.3, where we meet
quantum Turing machines and their complexity classes. We shall also state some
basic theorems and ideas about quantum computation.

8.1 DETERMINISTIC AND NONDETERMINISTIC COMPUTATIONS

Theoretical computer science deals with the question, “What is computable?” We
must immediately qualify the question: “computable according to which model of
computation?” It turns out that if we omit the question of efficiency, all sufficiently
complicated formal models of computation can simulate each other. However, in
order to fix our ideas and notation, we have to stick with one and work with it. For
historical reasons, we choose the Turing machine model.

We are going to assume that our reader already knows the basic “yoga” of Tur-
ing machines (see Figure 8.1). The simple facts are that a Turing machine is a device

! We are indebted to John D. Barrow for the source of this quote.

239

240 Theoretical Computer Science

Q32

#(#|b|1|3|a|0|##

Figure 8.1. Turing machine.

with a two-way infinite tape that serves as a place to read input, write output, do
scrap work, and to store a potentially infinite amount of information. The tape is
split into a one-dimensional infinite array of boxes, each of which can hold exactly
one symbol at a time. The machine can be in one of a finite set of states at any given
moment and “see” one box at a time. It can move along the tape in any of two di-
rections: left (L) or right (R). At each time step, the machine can read one box on
the tape, write on that box, move, and change states.
Formally, a deterministic Turing machine M is a 6-tuple

M = (Q, E! Gstart s Qaccept s Greject » 5)7 (81)

where Q is a finite set of states, ¥ is a nonempty finite alphabet that includes a
symbol # which we call “blank”; gsarss Gacceprs Grejec: are all elements of Q; and a
transition function §,

§:0xX— 0Ox X x{L,R}. (8.2)
Foragiveng € Qando € X if 8(q,0) = (¢/, o/, D), we mean that

If Turing machine M is in state g and the eye encounters symbol o, then the
machine should exchange symbol ¢ for ¢’, move one box in the direction D €
{L, R}, and enter state g’ € Q.

Equivalently, we can write the function § as
8:0x¥Tx0OxX¥x{L R — {0,1}, (8.3)
where
8(q,0,q',0',D)=1 ifandonlyif §(¢q,0) = (q’,0', D). (8.4)

Because for every ¢ € Q and o € %, § has exactly one output (¢',0’, D) € O x T x
{L, R}, our (deterministic) transition functions must satisfy the following require-
ment:

(Vg € Q)(Vo €) > 8(q,0,q',0', D) =1. (8.5)
q'€Q,0'ex,De{L,R}

It is not hard to see that any § is equivalent to a &’ that satisfies Equation (8.5).

8.1 Deterministic and Nondeterministic Computations

The set of all words in X without blanks is denoted (X — {#})*. An input string
from this set is placed on the tape at a specific starting place. The rest of boxes on
the tape are assumed to have blanks. The Turing machine is then “let loose” from
state ggqr¢ and follows the rules that are described by §’. There are three possibilities
that can occur to such a machine: (1) the Turing machine can reach state guccepr, (2)
the Turing machine can reach state gyejec;, or (3) the Turing machine can enter an
infinite loop and never reach guccep: OT Grejec:- Think of a Turing machine as solving a
decision problem by being presented with an input and then examining which state
the machine will enter. Each such machine determines a language L C (X — {#})* of
those words that the machine accepts.

Although there are many other models of computation, we are comfortable with
the deterministic Turing machine because of the following thesis:

Thesis. The Classical Church-Turing Thesis states that any problem that is intu-
itively computable can be computed by a deterministic Turing machine.

This thesis cannot be proved because it is impossible to give an exact definition
of what is meant by “intuitively computable.” However, most researchers agree that
the thesis is a true statement.

In this chapter, we work through several examples and present some exercises
involving Turing machines that follow the same theme. These machines are build
up to a crescendo until we reach a Turing machine version of the double-slit exper-
iment.

Example 8.1.1 Consider the following problem: a word of odd length in the al-
phabet ¥ = {0, 1, #} is given as input and we are asked if this string contains a “1.”

Words that have at least one “1” are accepted and words that are all “0’s” are re-
jected. We are deciding the language

L={weX":|w=2m+1, (3w =“1"}. (8.6)

The usual convention is that the head of the Turing machine is at the leftmost letter
of the input, but we shall be slightly unconventional and assume that the head is
reading the center symbol of the odd-length string.

Let us describe a deterministic Turing machine to solve this problem. The ma-
chine should start with its head in the center.” The head should move to the left
looking for a “1.” If the left end of the word is reached, then the head should move
to the right searching for a “1.” If a “1” is found, then the computer should enter
Gaccepr- If the head reaches the right end of the word without finding a “1,” then the
machine goes into state g¢j.c;. By convention, if the machine enters a halting state,
then the head just stays there. This Turing machine will not change anything on the
tape.’

> We have the adopted the convention that if the word is empty it is rejected.
3 In fact, what we have described is a two-way finite automaton. This example does not require the full
definition of a Turing machine.

241

242 Theoretical Computer Science

Formally, the set of states will be O = {gssars, Gaccept> Greject 41, qr} and 8 is de-
fined by the following table:

1) 0 1 #

Gstart qr, L Yaccept Greject (87)

qL qr, L Gaccept 4R R

qdRr qRr, R Qaccept qrejecl

Each row tells what should be done in that state. The columns describe which
symbol is seen. The entry tells us which state to enter and in which direction to move.
In words, the search begins by going to g;, that continually moves to the left. When
the machine hits #, the state enters gy that always moves to the right. At any time, if
a “1” is found, the machine enters guccep:- A configuration (also called a snapshot, or
instantaneous description) of a Turing machine contains the complete information
of the machine at a particular time step. There are three pieces of information that
have to be described:

m the tape’s contents,
m the state of the machine, and
B the position of the head of the Turing machine.

We shall summarize all three pieces of information by writing the contents of the
tape and the state exactly to the left of the position that the machine is reading. An
example of a configuration is

#00001001¢450010101#, (8.8)

which means that #000010010010101# is on the tape, the state is q4s, and the head is
reading the ninth symbol which is a “0.” (We will later need the obvious fact that all
the configurations can be put in lexicographical order.)

A typical computation, i.e., a sequence of configurations, might look like this:

#000gy;qr/0010# — #00g00010# —> #0g;000010# —> #¢; 00000104 —

q#0000010# — #g0000010# — #0qr000010# —> #00gg00010# —>
#0004 r0010# — #0000gg010# — #00000g g10# —> #00000¢,ccep: 104. (8.9)
In the worst-case scenario, for an input of size n, the machine will have to per-

form n + 5 operations before a “1” is found or before it realizes that no “1” is in the
word. We shall revisit this example in the next section. O

Exercise 8.1.1 Write a deterministic Turing machine that determines if the input
string has a substring “101.” You might have to begin by moving off the center a

8.1 Deterministic and Nondeterministic Computations

little. For an input of size n, how many moves does the Turing machine have to
make in the worst case? [|

What can and cannot be computed is not our exclusive interest. Another impor-
tant issue is what can be computed efficiently. We shall be looking at different sets
of problems of various degrees of difficulty. A complexity class is a set of problems
that can all be solved by a certain model of computation within certain efficiency
bounds. By examining and comparing different complexity classes, we shall derive
principles about different models of computation.

The number of computational time steps that a machine must undergo before it
enters an accepting or rejecting state is the number of steps for the computation. The
number will usually depend on the size of the input. Hence we describe a function
from the size of an input to the number of steps in the computation. Such a function
might be a polynomial. If every input to a problem can be solved within a polynomial
number of steps, then the problem is said to be solvable in a polynomial number of
steps.

Complexity Class. P is the set of problems that can be solved by a deterministic
Turing machine in a Polynomial number of steps.

This complexity class is important because of the following thesis:

Thesis. The Cook—Karp Thesis states that problems that are “tractably com-
putable” can be computed by a deterministic Turing machine in polynomial time,
i.e., arein P.

This thesis also cannot be proved because it is impossible to give an exact def-
inition of what we informally mean by “tractably computable.” In fact, one would
be hard-pressed to argue that a problem that demands n'% steps for an input of size
n is tractable. Nevertheless, n'% is a function that grows slower than any nontrivial
exponential function (including 1.001%).

Exercise 8.1.2 Find the least n such that 1.001" > n!%, []

There are other interesting models of computation. A nondeterministic Turing
machine is similar to a deterministic Turing machine, but we eliminate the require-
ment that at every step of the computation, the machine proceeds to exactly one
subsequent step. In other words, for a given g € O and a ¢ € X, the machine can
enter into a subset (possibly empty) of Q x ¥ x {L, R}. Formally, a nondeterminis-
tic Turing machine M is a 6-tuple

M= (Q’ 2, Gstart» Gaccept s Qreject » S)a (810)
where O, ¥, Gsrarts Gaccept» Greject are as before and 6 is a function

§:0x % — p(0x X x{L, R}, (8.11)

243

244 Theoretical Computer Science

where g is the powerset function. For a given g € Q and o € X if (¢, 0/, D) €
3(g, o), we mean that

If Turing machine M is in state ¢ and the eye encounters symbol o, then one of
the actions that the machine could perform is to exchange symbol o for o/, move
one box in the direction D € {L, R}, and enter state ¢’ € Q.

Just as we rewrote function (8.2), we might also rewrite function (8.11) as
5:0x % —> {0,1}FLB (8.12)

where {0, 1}2*>>{L.R! is the set of functions from Q x ¥ x {L, R} to {0, 1}. Whereas
8 in function (8.11) chooses a subset of Q x ¥ x {L, R}, § in function (8.12) chooses

the characteristic function of the same subset. We may write this § similar to function
(8.3):

§:0x2x0OxXx{L, R} — {0,1}, (8.13)

but this time we do not insist on the requirement that §' must satisfy Equation (8.5).
In other words,

(Vg € O)(Vo € ©) Z 8(q,0,9,0',D)=0, orl, or2, or ..., orn.
q'€Q,0'eX,De{L,R}

(8.14)
The largest nis |Q x £ x {L, R}|.

Exercise 8.1.3 Show that every nondeterministic Turing machine is equivalent to
a nondeterministic Turing machine that bifurcates into exactly two states at every
time step. Another way of stating this is that the summation in Equation (8.14) is
exactly 2. |

In nondeterministic Turing machines, a computation can perform one of several
different tasks at each time step. We say that a word is accepted by such a machine
M if there exists a computational path that ends in gaceep:-

Complexity Class. NP is the set of problems that can be solved by Nondeter-
ministic Turing machines in a Polynomial number of steps.

Because every deterministic Turing machine is also a nondeterministic Turing
machine (i.e., any &’ that satisfies Equation (8.5) also satisfies Equation (8.14)), every
problem that can be solved in polynomial time by a deterministic Turing machine
can also be solved by a nondeterministic Turing machine in polynomial time. Hence,
P € NP. The million-dollar question is whether P = NP. Alas, this question shall
not be answered in this text.

8.1 Deterministic and Nondeterministic Computations

If a problem has a “yes” answer, then the complement of the problem has a “no”
answer, and vice versa. Hence, we define the following:

Complexity Class. coP is the set of problems whose complements can be solved
by a deterministic Turing machine in a Polynomial number of steps.

Complexity Class. coNP is the set of problems whose complements can be
solved by a Nondeterministic Turing machine in a Polynomial number of steps.

If we can solve a problem with a deterministic Turing machine, then by swapping
the Guccepr and the gy.jec; states, we can solve the complement of the problem. From
this we know that P = coP. Notice that this trick does not work for nondeterministic
Turing machines: a nondeterministic Turing machine accepts a word if there exists at
least one computational path that ends with an accepting state. If a computation has
all but one path ending with an accepting state, then the word would be accepted.
If we swapped the accepting and rejecting states, then all but one path would end
in a rejecting state and exactly one path would end in an accepting state. Because
of the single accepting state, the computation would also be accepted. So a word
would be accepted by both a problem in NP and its corresponding problem in coNP.
This cannot be. In conclusion, although it is known that P = coP, we do not know if
NP = coNP. In fact, most researchers believe that NP # coNP. For the same reason
that P C NP, we have that

P = coP C coNP. (8.15)

We are interested in not only how much time a computation uses but also how
much of the Turing machine’s infinite tape is used.

Complexity Class. PSPACE is the set of problems that can be solved by deter-
ministic Turing machines using a Polynomial number of SPACEs on the tape.

We could have written the same definition using a nondeterministic Turing machine.
It is a consequence of Savitch’s theorem* that when looking at space (as opposed to
time), the distinction between deterministic polynomial space and nondeterministic
polynomial space is not essential.

Because a (nondeterministic) Turing machine can change only one box per time
step, machines that use p(#n) time steps to solve a problem cannot use more than
p(n) spaces of its infinite tape. Hence, we have NP C PSPACE. For similar reasons,
coNP C PSPACE.

4 Savitch’s theorem states that any nondeterministic computation that uses f(1) space can be simulated
by a deterministic computation that uses at most (f(1))? space. If f(n) is a polynomial, then (f(n))? is
also a polynomial. See, e.g., page 306 of Sipser (2005) or page 149 of Papadimitriou (1994).

245

246 Theoretical Computer Science

We may summarize the inclusions of the complexity classes that we have defined
so far as follows:

PSPACE

/ \NP
~

A line between one complexity class and another means that the lower one is in-
cluded in the higher one. It must be stressed that it is unknown if any of these inclu-
sions are proper inclusions.

coNP (8.16)

8.2 PROBABILISTIC COMPUTATIONS

Probabilistic computations occur when there is a random choice among several pos-
sible transitions during a computation. Probabilities can be described with real num-
bers in the interval [0, 1] € R. No computer’s memory can hold an arbitrary real
number.’ and so this set is beyond our bounds. Some tractable computable subset
of [0, 1] is needed. Consider the set R CR of tractably computable real numbers.
These are real numbers such that a deterministic Turing machine can calculate their
nth digit in polynomial time. We shall be concerned with

[0.1] =[0.1]&. (8.17)

A probabilistic Turing machine is a Turing machine that randomly performs one
of several tasks at each time step. Formally, a probabilistic Turing machine is a 6-
tuple

M = (Qv X, Gstart s Qaccept s Greject » 8)7 (818)

where everything is as before except the transition function §. § is now a function

—— OxXIx{L,R}

3:0x ¥ —[0,1] , (8.19)
—— Ox X x{L,R}
where [0, 1] is the set of functions from the set of all possible actions, Q x

¥ x {L, R},to m For a given state and symbol, § will describe the probabilities of
the moves that the machine can make. An arbitrary function from Q x ¥ x {L, R}

—~—

to [0, 1] is not good enough. We must also restrict § so that the sum of all the prob-
abilities is equal to 1. § is restricted as follows: as an analogy to functions (8.3)
and (8.13), we define

S/ZQXZXQXZX{L,R}—>[O,/_1/], (8.20)

5 An arbitrary real number might have an infinite expansion. One could encode any language in that
expansion.

8.2 Probabilistic Computations
where
§(q,0,q',0', D) =r € [0,1] (821)
if and only if
8(q, o) is the function that takes (¢', o', D) tor € m (8.22)

It is not hard to see that for every § there is a unique &’ that performs the same job.
However, we insist that §’ satisfy the following requirement (analogous to Equations
(8.5) and (8.14)):

(Vg € Q)(Yo € %) > 8(q.0.q',0', D) =1. (8.23)
q'€Q,0'eX,De{L,R}

This means that at every state and when viewing every symbol, the sum of all the
probabilities of possible moves is equal to 1.

How does this machine work? At every time step, the machine will be in a certain
state, say g, and will be looking at a certain symbol, say 016, on the tape. The func-
tion § gives the nonzero probabilities where we list all possibilities in lexicographical
order using the ordering of Q, ¥, and {L, R}.

(g9, 02, L)
0.14
(q17, 013, R)
0.23
(g6, 016) (8.24)
0.08
0.55
(q17, 019, R)
(q21, 023, L)

A real number between 0 and 1 is randomly chosen. This real number will de-
termine which operation the Turing machine should perform. For example, if
the real number is 0.12, which is between 0.0 and 0.14, then the machine will
perform the (qg, 02, L) operation. If the real number is 0.39, which is between
0.14 4+ 0.23 and 0.14 + 0.23 + 0.08, then the machine will perform the (g17, 019, R)
operation.

Exercise 8.2.1 Following the spirit of Exercise 8.1.3, show that every probabilistic
Turing machine is equivalent to a Turing machine that can enter one of exactly two
configurations. The machine can choose one of these two configurations by flipping
a fair coin or by looking at a tape with a random sequence of “0’s” and “1’s.” The

247

248

Theoretical Computer Science

machine will choose one operation if there is a “0” and the other one if there is a
“1.” (Hint: Write the probability r as a finite binary sequence.) |

As with a regular Turing machine, the input will be placed on the tape, the com-
puter will be put in the gy, state, and then the machine will “run.” At each time
step, an arbitrary real number is randomly chosen and the Turing machine performs
the appropriate next action. At some point, the computer might enter a halting state
and stop.

Exercise 8.2.1 Following Example 8.1.1, let us describe a probabilistic Turing ma-
chine that solves the same problem. Because we are dealing with probabilistic algo-
rithms, we shall permit false negatives, i.e., the machine might report that there is
no “1” when, in fact, there is one.

We place the probability of performing a given action to the left of the action.

1) 0 1 #

Gstart % “qL, L; % ‘4R, R 1: accept 1: Greject (825)
qL 1:q., L 1: accept 1: Areject

qr 1: qRr, R 1: accept 1: Greject

How does this work? When the computer starts, 50% of the time the head moves
to the left and 50% of the time it moves to the right. The machine will examine 5 + 1
boxes and hence will give a correct answer more than half the time. The machine
will have to go through 7 time steps in the worst case. |

Exercise 8.2.2 Describe a probabilistic Turing machine that does not generate any
false negatives. The machine should start by randomly moving to the left or to the
right. However, regardless of direction, if it hits the left end or the right end of the
word without finding a “1,” it should reverse itself. Make sure that the machine does
not end up in an infinite loop! Show that in the worst case, there will have to be %”
time steps. |

Exercise 8.2.3 Describe a probabilistic Turing machine that determines if there is
a substring “101” in the input string. Do the same for a solution that permits false
negatives and one that does not permit false negatives. |

Let us look at the different complexity classes that are defined for probabilistic
Turing machines. Because of the probabilistic nature of the execution of such a
Turing machine, there is a chance that when you execute the same program on the
same input, there will be a different final state, i.e., there is a chance that the Turing
machine will produce an error. An input should be accepted by a Turing machine,
but the machine rejects it (false negative), or an input should be rejected and the
machine accepts it (false positive).

8.2 Probabilistic Computations

We shall also restrict our attention to those probabilistic Turing machines that
stop within a polynomial number of time steps in the length of the input.

In terms of permitting errors, the largest class of problems that we will be in-
terested in are those that can be solved by probabilistic Turing machines that allow
some false negatives and some false positives.

Complexity Class. BPP is the set of problems that can be solved by a Prob-
abilistic Turing machine in Polynomial time with the possibility of some errors.
To be precise, if M is a probabilistic Turing machine that decides L € BPP and
if x is a word, then

2
x € L= Prob(M accepts x) > 3 (8.26)
and

2
x & L= Prob(M rejects x) > 3 (8.27)

We shall discuss the use of the fraction % presently.
A smaller set of problems are those that can be solved with a probabilistic Turing
machine that permits false positives but does not permit false negatives.

Complexity Class. RP is the set of problems that can be solved by a probabilis-
tic (i.e. Random) Turing machine in Polynomial time with only the possibility
of false negatives. In other words, if M is a probabilistic Turing machine that
decides L € RP and if x is a word, then

2
x € L= Prob(M accepts x) > 3 (8.28)

and

x ¢ L = Prob(M rejects x) = 1. (8.29)

We can also consider problems that can be solved by probabilistic Turing ma-
chines that permit only false positives.

Complexity Class. coRP is the set of problems that can be solved by a Prob-
abilistic Turing machine in Polynomial time with only the possibility of false
positives. In other words, if M is a probabilistic Turing machine that decides
L € coRP and if x is a word, then

x € L= Prob(M accepts x) = 1 (8.30)

and

2
x ¢ L = Prob(M rejects x) > 3 (8.31)

249

250 Theoretical Computer Science

The easiest problems are those that can be solved by probabilistic Turing ma-
chines in which no errors are permitted.

Complexity Class. ZPP is the set of problems that can be solved by a Prob-
abilistic Turing machine in Polynomial time with Zero error. In other words, if
M is a probabilistic Turing machine that decides L € ZPP and if x is a word,
then there is a less than 50% chance that the machine will finish in a “do not
know” state, otherwise if the machine does know

x € L= Prob(M accepts x) =1 (8.32)
and

x ¢ L= Prob(M rejects x) = 1. (8.33)

It is a fact that RP () coRP = ZPP.°

If we can solve a problem with no errors (ZPP), then we can definitely solve the
problem permitting false negatives (RP) and we can definitely solve the problem
permitting false positives (coRP). Furthermore, if we can solve a problem permit-
ting only false negatives (RP), then we can definitely solve the problem permitting
both false negatives and false positives (BPP). A similar argument can be made for
coRP. Thus we have the following inclusion diagram:

coRP (8.34)

It must be stressed that it is unknown if any of these inclusions are proper inclusions.

One might wonder why the fraction % plays such an important role here. In fact,
we could have used any fraction greater than % and the classes of problems would
have been the same. The reason for this is the amplification lemma.” The idea is that
one can execute the Turing machine a polynomial amount of times and accept or
reject the input depending on the results of the majority of executions. This method
provides exponential growth in the likelihood of excluding false positives and false
negatives.

Let us relate the complexity classes of this section with those of Section 8.1.
One can consider a deterministic Turing machine a probabilistic Turing machine
that does not make any guesses and always comes up with the right answer. From

this, we have that P € ZPP. Another way of thinking about L € RP is thatif x € L,
then at least two-thirds of the computational paths end in guccepr, and if x ¢ L, then

6 See, e.g., page 256 of Papadimitriou (1994).
7 E.g., see Zachos (1982), page 369 of Sipser (2005), or page 259 of Papadimitriou (1994).

8.3 Quantum Computations

all the computational paths end in gyejec;. Similarly, one can think of L € NP as
stating that if x € L, then at least one of the computational paths ends in g,ccepr, and
if x ¢ L, then all the computational paths end in g,je;. Because two-thirds of the
computational paths (of an RP computation) are greater than one computational
path (of an NP computation), it is not hard to see that RP C NP. Similarly, coRP C
coNP.

For every L € BPP, we can create a machine that traverses all the computational
paths and keeps track of the paths ending in guccepr and grejec;- There is no reason
to save the path once it is calculated, so we might as well reuse the space. Such
a machine will take a very long time to calculate an answer, but it will use only a
polynomial amount of space. From this, it can be seen that BPP € PSPACE. By a
similar analysis, it can be seen that NP € PSPACE and coNP € PSPACE.

We can sum up our results with the following diagram.

PSPACE

coNP BPP

o

coRP

.
~.

zp

P

/

(8.35)

Again, it must be stressed that it is unknown if any of these inclusions are proper
inclusions. The relationship between BPP and NP is also unknown.

Because probabilistic Turing machines are so general and because they permit
some error (“noise”), we have the following thesis:

Thesis. The Strong Church-Turing Thesis states that any efficient computation that
can be performed by any physical machine can be simulated by a probabilistic
Turing machine in polynomial time, i.e., in BPP.

We reexamine this thesis at the end of the next section.

8.3 QUANTUM COMPUTATIONS

As you have probably guessed, quantum Turing machines will have something to do
with complex numbers. As in the last section, general complex numbers C are be-
yond the reach of a finite machine. Thus, we are in need of the subset of all tractably
computable complex numbers C < C. C consists of those complex numbers such

251

252

Theoretical Computer Science

that the nth digit of their real and imaginary parts can be deterministically com-
puted in polynomial time."

At last, we come to the definition of a quantum Turing machine. A quantum
Turing machine is a 6-tuple

M= (Qa %, Gstart > Qaccept > Qreject » 5/) (838)

where everything is as before except the transition function 8’ (analogous to func-
tions (8.3),(8.13), and (8.20))

§:0xEx0OxXx{L R — C. (8.39)
We require’ that &' satisfy (analogous to Equations (8.5), (8.14), and (8.23))

(Vg € Q)(Vo €) > 18'(q. 0.q',0', D)* = 1. (8.40)
q'€Q,0'eX,De{L,R}

In plain English, a quantum Turing machine is like a probabilistic Turing ma-
chine but the probabilities are given as complex number amplitudes.'® And we re-
quire that for any particular ¢ € O and o € X, the sum of those squared norms of
the amplitudes equals 1. This can be visualized by a diagram similar to diagram
(8.24) but with complex numbers. Another way of thinking about it is to consider
what configuration the machine is in and what configurations it will enter with the
actions. The complex numbers determine the probabilities of which configuration it

8 We do this for the reasons given in the last section. It was proven in Adleman, DeMarrais, and Huang
(1997) that any quantum Turing machine can be simulated by a machine that uses only the numbers

4 3 3 4
{_1,_5,_5,0,5,5,1} (8.36)

or, if irrationals are permitted,

1 1

{ 1, \/5’0’ ﬁ,l}. (8.37)
This requirement is not strictly needed because we are going to impose a much stronger requirement
presently. (It is left in the text to make the connection between classic probabilistic Turing machines
and quantum Turing machines.) Furthermore, we can permit arbitrary tractably computable com-
plex numbers and then calculate probabilities with a normalization trick as we did in Section 4.1 on
page 103.

The clever reader will notice the progression of §’s in this chapter. They were all the same functions,
except they take values in different sets. We went from {0, 1} to real numbers (of the appropriate type)
to complex numbers (of the appropriate type.) This progression is exactly the same as the progression
of entries in the adjacency matrices of the weighted graphs discussed in Chapter 3. That makes sense;
after all, the different systems discussed in Chapter 3 were introduced to bring to light the differ-
ent types of computational power. However, the analogy highlights a problem with Chapter 3. Just
as we restricted the values of the real and complex numbers in this chapter to tractably computable
real and complex numbers, so too we should have restricted the values of the entries in the matri-
ces of classical probabilistic systems and quantum systems. However, we wrote it as is for simplicity’s
sake.

8.3 Quantum Computations

will change as follows:

(Confige)
(Configye)

(Confige) : (8.41)

(Config;)

(Configy7)

A quantum Turing machine works differently than a probabilistic Turing ma-
chine. Rather than carrying out one of the possibilities, it performs a/l the opera-
tions and enters a superposition of all the resulting states. The quantum Turing ma-
chine will collapse to a single configuration only when it is measured. In fact, if we
observe the state and the contents of the tape of the quantum Turing machine after
each step, then a quantum Turing machine will be the same as a probabilistic Turing
machine. The difference is that when we do not observe the state and the contents
of the tape, the probabilities of performing one operation followed by another sum
up as complex numbers (a short review of Section 3.3 would be in order). Hence
when we do not observe, there will be interference and superposition of contents of
the tape.

Bernstein and Vazirani (1997) have many conventions that they insist their quan-
tum Turing machine follow. There are many different reasons for this. Although
these conventions are important for their work, we shall ignore most of them be-
cause we want to show only the basic workings of a quantum Turing machine.

There are, of course, many variants of quantum Turing machines, such as ma-
chines with many tapes and many tracks. It was shown in Yao (1993) that many
of these are polynomially equivalent to the quantum Turing machine described
earlier.

Many of the properties that one would want in a Turing machine, such as it-
eration, subroutines, and looping, are shown to exist with a quantum Turing ma-
chine in Bernstein and Vazirani (1997). Some of them are done with great effort.
All these different properties are combined to show that one can actually con-
struct a universal quantum Turing machine, i.e., a quantum Turing machine that
can simulate'' every other quantum Turing machine. With such a universal quan-
tum Turing machine, we acquire many results similar to those of classical recursion
theory.

1 The notion of simulation has to be suitably adjusted because of the probabilistic nature of the com-
putation. We cannot simply state that one machine outputs as the other. There must be a statement
about “how far away” the simulated output is from the real one.

253

254

Theoretical Computer Science

There is another way of thinking about quantum Turing machines. For a given
machine, there is the set of all possible configurations of that machine. We can form
a countably infinite dimensional complex vector space € from these configurations.
The vectors in this vector space will be finite complex linear combinations of con-
figurations.'> One can think of a vector as a countably infinite sequence of complex
numbers indexed by the configurations of the Turing machine, where all but a finite
number of the complex numbers are 0.

Config, [co]

Config, | e

Config, | ¢

: : (8.42)
Conﬁgj cj

A classical state of a quantum Turing machine will be a vector for which all but one
complex number is 0 and the unique nonzero ¢; is 1. This states that the configura-
tion of the Turing machine is Config;. An arbitrary vector in € will correspond to a
superposition of classical configurations that can be written as

) = ¢l Config)), (8:43)
j

where the sum is over a finite set.
This is fine for states of the system. How does the system itself change? We shall
make a countably infinite “matrix” Uy

Uy:¢ — ¢ (8.44)

Every row and column of this matrix will correspond to a possible configuration of
the machine.

Config, Config; Config, --- Configy
Config, [coo Co1 cop v co,j]
Config, €10 cL1 cly e c1,j
Config, 2,0 21 22 cee €2,
Um = : : : . : (8.45)
Config; Ccjo cj1 Cj2 e cjj

12 This complex vector space is an inner product space but not a Hilbert space because of the finiteness in
the definition. If we relax the finiteness requirement, then the inner product space is, in fact, complete
and thus a Hilbert space.

8.3 Quantum Computations

The entries of the matrix will be the complex numbers that describe the amplitude of
going from one configuration to another. That is, ¢; ; will be the amplitude described
by 4’ that would change configuration j into configuration i as depicted in diagram
(8.41). Obviously, most of the entries of this matrix will be 0.

Definition 8.3.1 A quantum Turing machine is well formed if the constructed Uy
preserves the inner product (is an isometry) in C.

With a well-formed quantum Turing machine, one is back into the familiar
world of unitary matrices. If we let |Config;) be the initial configuration, then
Uy| Config;) will be a configuration or a superposition of configurations after one
time step. Us;|Config;) will be the (superposition of) configuration(s) after two
steps. If the Turing machine runs in time ¢(n), then we would have to observe the
state

Upio Uy oo Uy |Config;) = US| Config,). (8.46)

t(n) times

Example 8.3.1 There is nothing particularly quantum about the set € of configura-
tions and the matrix acting upon it. In fact, the same can be done for a deterministic
Turing machine. In the deterministic case, we will only be concerned with vectors
that have exactly one entry as 1 and all others as 0 (note that this is not a subvector
space of € because it is not closed under addition). The Uy, will be such that every
column has exactly one 1 and the remaining entries 0. O

Exercise 8.3.1 Do a similar analysis to the one in Example 8.3.1 for a reversible
deterministic Turing machine and for a probabilistic Turing machine. |

Example 8.3.2 In the spirit of Examples 8.1.1 and 8.2.1, let us describe a quantum
Turing machine that solves the same problem.

8 0 1 #

Gstart \/Li “qrL, L \/Li “gR; R 1: accept 1: Greject (8 47)
qL 1: qr, L 1: accept 1: reject

qr 1:qr R 1: accept 1: reject

This quantum Turing machine does not start by moving either to the right or to
the left. Rather it moves both to the right and to the left simultaneously.
A typical computation might look like this:

[#00g7,00010#) + |#0000gg010#)
NG

|#0g,000010#) + |#00000g z104#) |#q£0000010#) + [#00000¢4ccep 10#)
NG — N '

#0001y 0010%) —>

(8.48)

255

256

Theoretical Computer Science

It is obvious that the machine will solve this problem without false positives or
false negatives in 7 steps. Again, we want to stress that this is not really a quan-
tum Turing machine because it does not satisfy all the conventions laid down in
Bernstein and Vazirani (1997).

We feel confident in identifying this as “a Turing machine version of the double-
slit experiment.” The double-slit experiment is performed by physicists who are in-
terested in where a photon lands. A photon exhibits the superposition phenomenon,
and hence the photon passes through both slits simultaneously. We are computer
scientists and solve searching problems. This problem is solved in 7 time by splitting
into a simultaneous superposition of two computational paths. (Of course, it is not
really the double-split experiment because there is no interference, only superposi-
tion.) O

Let us summarize what we have done in Examples 8.1.1, 8.2.1, and 8.3.2 and in
Exercise 8.2.2. For the same problem, i.e., given a string to determine if it contains
a “1,” we formulated deterministic, probabilistic, and quantum Turing machines.
Some of these machines solved the problem without error and some of them gave
us probabilistic solutions. The problems were solved in the following time.'?

Turing Machine Running Time

Exact Probable

Deterministic n+35 NA (8.49)
Probabilistic n+35 3
Quantum s NA

Exercise 8.3.2 Write a quantum Turing machine that determines if there is a sub-
string “101” on the tape. |

A quantum Turing machine is just one model of quantum computation. In Chap-
ters 5 and 6 we dealt with another one, namely, quantum circuits. (The QRAM
model, dealt with in Chapter 7, is yet another way of describing quantum compu-
tations.) In the classical case, logical circuits and deterministic Turing machines are
polynomially equivalent. That means that each model can implement the other with
only polynomial amount of “overhead.” Yao (1993) proved a similar result for the
quantum case. That is, quantum circuits and quantum Turing machines are polyno-
mially equivalent.

The following simple example shows how a quantum Turing machine would im-
plement a common quantum circuit:

13 We have deliberately omitted the nondeterministic case from our chart. The reason is that a nonde-
terministic Turing machine can also solve the problem in 5 steps. This is just as fast as the quantum
Turing machine and would have “stolen its thunder.” We should remind the reader that nondetermin-
ism is a mathematical fiction whereas the laws of quantum mechanics are a physical fact.

8.3 Quantum Computations

Example 8.3.3 Many of the algorithms in Chapter 6 required that we apply H®"
to a string of qubits. Let us show how one would do this with a quantum Turing
machine. Suppose that a string of n “0’s” and “1’s” are on a tape and that the head
is pointing to the leftmost symbol of the string.

8 0 1 #

Gstart (75 10.Gstares L) (3510, Gstares L) 12 Gstop (8.50)
(\/Li . 17 (Istarta L) (_\/Lz : 15 %‘lart’ L)

Basically, the quantum Turing machine will go through the string and change
the “0’s” or “1’s” the way a Hadamard matrix would. (This is a simplification of
Theorem 8.4.1 of Bernstein and Vazirani (1997). Ours is simpler because we have
not followed all their conventions.) O

Let us have a look at complexity classes for quantum Turing machines. As in
Section 8.2, because of the probabilistic nature of the computations, there is the
possibility of false positives and false negatives. We are led to the following three
definitions:

Complexity Class. BQP is the set of problems that can be solved by a Quantum
Turing machine in Polynomial time with Bounded error on both sides. In other
words, if M is a quantum Turing machine that decides L € BQP and if x is a
word, then

2
x € L= Prob(M accepts x) > 3 (8.51)
and

2
x ¢ L = Prob(M rejects x) > 3 (8.52)

It was proven in Bennett et al. (1997) that the same amplification lemma that
worked for probabilistic complexity classes also works for BQP. Hence, the fraction

% is not of major significance.

Complexity Class. ZQP is the set of problems that can be solved by a Quantum
Turing machine in Polynomial time with Bounded error on both sides. In other
words, if M is a quantum Turing machine that decides L € ZQP and if x is a
word, then there is a less than 50% chance that the machine will finish in a “do
not know” state, otherwise if the machine does know then

x € L= Prob(M accepts x) = 1 (8.53)
and

x ¢ L= Prob(M rejects x) = 1. (8.54)

257

258

Theoretical Computer Science

Complexity Class. EQP is the set of problems that can be solved with a
Quantum Turing machine in Polynomial time Exactly (without error). In other
words, if M is a quantum Turing machine that decides L € EQP and if x is a
word, then

x € L= Prob(M accepts x) =1 (8.55)

and

x & L= Prob(M rejects x) = 1. (8.56)

It should be obvious that
EQP C ZQP C BQP. (8.57)

Now relate these complexity classes with those of Sections 8.1 and 8.2. Because a
deterministic Turing machine can be seen as a type of quantum Turing machine, we
have that P € EQP. Given that we can have a quantum Turing machine simulate a
probabilistic Turing machine by using the Hadamard matrix as a fair coin toss, we
have that BPP € BQP. Also, for the same reason that BPP can be mimicked by a
machine that uses only polynomial amount of space, so too BQP can be mimicked
by such a machine. Such a machine is the theoretical version of a quantum emulator.
The fact that every problem in BQP can be simulated by something in PSPACE
shows that every quantum computation can be simulated by a classical computer.
Of course, the simulation will probably use exponential time if it was to be exact.'*
Summing up, we have the following:

PSPACE
BQP
/ \
coNP ZQP
EQP (8.58)
coR
ZPP

4 We can also make the obvious definition of QSPACE. It was shown in Watrous (1999) that
QSPACE(f(n)) € SPACE((f(n))?). This is analogous to Savitch’s theorem about nondeterministic
computation.

8.3 Quantum Computations

It is unknown if any of these inclusions are proper inclusions. There is much still
open about the relationships among these complexity classes.

Because of Shor’s algorithm and the belief that there is no polynomial prob-
abilistic algorithm to factor numbers, it is strongly believed that BPP S BQP. It
should be noticed that if it were to be proved that BPP # BQP, then we would
know that P # PSPACE, which has been an open problem for a very long time.

It should be noted that Shor’s algorithm is not the only algorithm that we saw
that has an exponential speedup. As we saw in Chapter 6, the Deutsch—-Jozsa algo-
rithm and Simon’s algorithm also had exponential speedups over any known classi-
cal algorithm.

If a large-scale quantum computer is ever built, then there would be evidence
that the strong Church-Turing Thesis would be invalidated. Such a quantum com-
puter will be a physical machine that can perform a computation (e.g., factor-
ing large numbers) for which there are no known polynomial time probabilistic
machines. (Of course, someone might create such a probabilistic machine in the
future.)

It is to be stressed that although Shor’s algorithm solves the factoring problem,
factoring is not believed to be an NP-complete problem. The factoring problem, as
a decision problem, is an NP problem (and a coNP problem) but has never been
shown to be harder than any known NP-complete problem. In terms of quantum
computers, this means that even if there were a large-scale quantum computer,
we would not be able to use Shor’s algorithm to solve all known NP-complete
problems.

Some researchers believe that the fact that there is a quantum algorithm for the
factoring problem is a “fluke” and not something that should be expected for many
problems. They believe that methods similar to Shor’s algorithm will not be very
helpful for other hard problems.

In contrast to Shor’s algorithm, Grover’s algorithm can be very interesting in
terms of NP problems. Although the speedup using Grover’s algorithm is from n
to 4/n, which is quadratic and not exponential, it is still significant. Consider your
favorite NP problem. The search space for such a problem is, in general, either n! or
2". One can set up Grover’s algorithm to search through the problem’s search space.
So if the problem is SAT, we can use Grover’s algorithm to search through all 2" pos-
sible valuations of the n variables in the formula. If the problem is HAMILTONIAN
GRAPH, then search through all n! paths on the graph to find one that is hamilto-
nian. In fact, we are solving a search problem rather than a decision problem. "’

Let us perform some calculations to show how significant Grover’s speedup
can be. Say, we would like to solve some NP problem whose search space is 2".
Imagine a quantum computer running Grover’s algorithm that can perform 1,000
function evaluations per second. This quantum computer will have to perform /2"
function evaluations. Contrast this with a classical computer running a brute-force
search through all 2" possible members of the search space. We shall assume that

- n

15 We showed that we can solve an NP problem in O(22) time using Grover’s algorithm. We are led to
the obvious question of whether we can do better. It has been shown in Bennett (1997) that relative to
an oracle chosen uniformly at random with probability 1, the class of NP cannot be solved by quantum

n
Turing machines in 0(22) time.

259

260 Theoretical Computer Science

this classical computer is 100 times faster than the quantum computer, i.e., it can
perform 100,000 function evaluations per second. The following table shows how
these two algorithms compare on different values of #:

Classical Brute-Force Search Quantum Grover’s Algorithm Search
n 2" ops Time V2 ops Time
5 32 0.00032 second 5.656854249 0.00566 second
10 1,024 0.01024 second 32 0.032 second
15 32,768 0.32768 second 181.019336 0.18102 second
20 1,048,576 10.48576 seconds 1,024 1,024 seconds
25 33,554,432 335.54432 seconds 5792.618751 5.79261 seconds (8.59)
30 1,073,741,824 10737.41824 seconds 32,768 32.768 seconds
40 1.09951E+12 127.25829 days 1,048,576 1048.576 seconds
50 1.1259E+15 356.77615 years 33,554,432 33554.432 seconds
60 1.15292E+18 365338.7788 years 1,073,741,824 12.42756 days
70 1.18059E+21 374106909.5 years 34,359,738,368 397.68215 days

100 1.26765E+-30 4.01694E+17 years 1.1259E+15 35677.61512 years
125 4.25353E4-37 1.34786E+25 years ~ 6.52191E+18 206666822.3 years

We can see that for n = 15, the quantum computer will run faster than the classical
computer. We conclude that Grover’s algorithm might have major significance when
dealing with “hard” computer problems.

Exercise 8.3.3 Write a short program or use either MATLAB or Microsoft Ex-
cel to determine the exact n when the slower quantum computer running Grover’s

algorithm runs faster than the classical computer running a brute-force algorithm.
|

Exercise 8.3.4 Perform a similar analysis to that shown in table (8.59) for an NP
problem whose search space is n!. |

References: For general Turing machines, see Davis, Weyuker, and Sigal (1994)
or Garey and Johnson (1979). Another excellent text is Sipser (2005).

For probabilistic Turing machines, see Section 10.2 of Sipser (2005) or Chap-
ter 11 of Papadimitriou (1994). For general complexity theory, see Papadimitriou
(1994).

For Section 8.3, we mostly followed Bernstein and Vazirani (1997). Their defi-
nition of a quantum Turing machine is a variant of the one formulated in Deutsch
(1985). Much was gained from the following survey papers: Cleve (1999), Fortnow
(2003), and Vazirani (2002).

8.3 Quantum Computations

Scott Aaronson has a very interesting blog “Shtetl-Optimized” that looks
at current issues in quantum computability and complexity theory: http:/www.
scottaaronson.com/blog/. Well worth the read. He is also the “Zookeeper” at a
Web page (http:/qwiki.caltech.edu/wiki/Complexity-Zoo) that has more than 400
different complexity classes. These are great places to start learning more about this
topic.

261

http://www.scottaaronson.com/blog/
http://qwiki.caltech.edu/wiki/ComplexityZoo
http://www.scottaaronson.com/blog/

262

9

Cryptography

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost, The Secret Sits (1942)

In this chapter we explore the merging of quantum computation and classical cryp-
tography. This is a new and exciting field of pure and applied research known as
quantum cryptography.

We begin with the basics of classical cryptography in Section 9.1. Section 9.2
demonstrates a quantum cryptographic protocol that uses two different bases. We
improve on this in Section 9.3, where a protocol with one basis is employed. Section
9.4 shows how to use entanglement to secretly send a message. We conclude with
Section 9.5, in which teleportation is demonstrated.

9.1 CLASSICAL CRYPTOGRAPHY

Before delving into quantum cryptography, we need to familiarize ourselves with
the core ideas of classical cryptography. A good place to start is the following defi-
nition.

Definition 9.1.1 Cryptography is the art of concealing messages.

Indeed, this is precisely what the etymology reveals: “Cryptography” is a compound
of two Greek words, crypton' and graphein, which mean, respectively, hidden and
writing.

Turning an ordinary message into an indecipherable one is called encryption.
The opposite action, i.e., restoring the original message, is decryption. The original
message is generally referred to as the plaintext, and the encrypted message is the
ciphertext. A method for encryption is often referred to as an encryption protocol.

I Now you know where the Kryptonite got its name. It is rare to find and hence is “hidden.” Tt usually
stays concealed unless Lex Luthor gets hold of it!

9.1 Classical Cryptography

T T
@ e ENC — DEC e ©
y Bob

Alice L 7
- ™ h'/'

|

Figure 9.1. A basic communication scheme.

The history of cryptography is a very long one. As soon as people started sending
messages to each other that were not intended for the public, the need for privacy
arose. At the very moment encryption ideas and techniques were devised by some
smart individual, another one, just as smart set out to break them. Thus, cryptology
was born.

To present encryption and decryption methods, we need to set the scene. First,
we need two characters — the sender of messages and the receiver. In the standard
cryptology literature, these two are named Alice and Bob. Alice wants to send a
message to Bob, say, a string of plaintext 7. We assume that Alice and Bob are
physically separated and that they can communicate with each other over some kind
of insecure channel .’

Alice uses an encryption algorithm — let’s call it ENC — that turns 7 into some
encrypted text E. We can think of ENC as some computable function, taking 7" and
an additional parameter Kg, known as the encryption key, as inputs. ENC computes
the encrypted message E, which is transmitted to Bob.

ENC(T, Kg) = E. (9.1)

Bob receives E (assuming there is no noise involved) and applies a decryption algo-
rithm, DEC, to the encrypted message to reconstruct 7. D EC requires a decryption
key Kp as input.

DEC(E, Kp)=T. (9.2)

The entire scheme is shown in Figure 9.1.
Summing up, ENC(—, Kg) and DEC(—, Kp) are a pair of computable functions
such that for every message T, the following equation holds:

DEC(ENC(T, Kg), Kp) = T. (9.3)

What does this equation tell us? It states that as long as we use the right keys, we
can always retrieve the original message intact without any loss of information.

Exercise 9.1.1 Does Equation (9.3) imply that ENC(—, Kg) and DEC(—, Kp) are
a pair of bijective functions that are inverse to each other? |

Let us now examine a concrete example of an encryption protocol, a method
known as the Caesar’s protocol.’ Arrange the letters of the English alphabet on a

2 Why insecure? First of all, if the channel were foolproof beyond any reasonable doubt, we would have
no story. Why bother with cryptography if no one else can spy on the message? Second, in the context
of secure message transmission, every channel must be assumed insecure unless proven safe.

3 Julius Caesar apparently used an encryption technique like this one to communicate with his generals
during his military campaigns. See Suetonius’ Life of Julius Caesar, Paragraph 56.

263

264 Cryptography

Figure 9.2. A children’s encryption toy.
circle, so that the order is

...,AB.C,....XY,Z A B,.... (9.4)

Let ENC = DEC = shift(—, —), where shift(7, n) = T, the string obtained from T
by shifting each character n steps clockwise if # is positive, or counterclockwise if it is
negative (for instance, shift(“MOM,” 3) =“PRP”). Children actually make a helpful
toy for this encryption protocol as depicted in Figure 9.2. This toy consists of two
concentric circles with the alphabet written clockwise on each circle. The circles can
be turned until the desired letters are matched up. With this encryption protocol,
the decryption key is just the encryption key with the sign changed: Kp = — K.

Exercise 9.1.2 Decipher the following message “JINTGMNF VKRIMHZKTIAR
BL YNG.” (Hint: Use Figure 9.2.) |

Programming Drill 9.1.1 [mplement the encryption and decryption of text with the
Caesar’s protocol. Using ASCII makes this particularly easy.

To make our story a bit more exciting, we need a third character, Eve, the eaves-
dropper, who can intercept the encrypted message and try to decode it. As previ-
ously noted, Alice is using an insecure channel (such as a public telephone wire) to
transmit messages to Bob. Eve can thus tap into the channel and eavesdrop on its
content. The protocol we have just presented is quite primitive and would not stand
Eve’s scrutiny for too long.

Imagine that you are Eve and that by tapping into the insecure channel you
can save fairly long encrypted messages from Alice. How would you discover the
encryption mechanism? If you were Eve, you might have a hunch about the weak
side of the simple-minded protocol we have just introduced. The weakness lies in
the fact that the original message and the encrypted one are highly correlated. By
calculating simple statistics on the encrypted text, Eve may easily find her way back
to the original text. Aside from her malicious purposes, Eve works exactly like an
archeologist decoding an ancient unknown language.

To counter Eve’s insight, Alice and Bob change their protocol. Their ideal strat-
egy is to create an encrypted message E that bears no statistical correlation with the

9.1 Classical Cryptography

original message 7. How can this be accomplished? Here is a surprisingly simple an-
swer: a straightforward protocol known as the One-Time-Pad protocol or Vernam
cipher.

As we are computer scientists, for the rest of this chapter, we shall refer to T as
a binary string of length n. Alice tosses a coin n times and generates a sequence of
random bits that she uses as her random key K. Assuming Alice and Bob both share
K, they can exchange messages by means of the following protocol:

Step 1. Alice calculates E = T @ K, where @ stands for the bitwise XOR opera-
tion.*

Step 2. Alice sends E along a public insecure channel.
Step 3. Bob retrieves E and calculates 7 from 7= E® K.
In this notation that we have introduced,

Kp=Kp=K, (9:5)

ENC(T,K)=DEC(T,K)=T® K, (9.6)

and
DEC(ENC(T,K),K) = DEC(T® K, K)
=(TeK)y¢oK=To (Ko K)=T. 9.7)

Example 9.1.1 The following table shows an example of an implementation of the
One-Time-Pad protocol:

One-Time-Pad Protocol

Original message T 0 1 1 0 1 1
Encryption key K @ 1 1 1 0 1 0
Encrypted message E 1 0 0 0 0 1
(9.8)
Public channel b 4L 4 4 4 U
Received message E 1 0 0 0 0 1
Decryption key K @ 1 1 1 0 1 O
Decrypted message T o 1 1 0 1 1
O

* A quick reminder on XOR: it is simply bitwise addition modulo two. 01001101 & 11110001 = 10111100.

265

266

Cryptography

Exercise 9.1.3 Find a friend and flip a coin to get an encryption key K. Then use
K to send a message. See if it works. |

Programming Drill 9.1.2 Implement the One-Time-Pad protocol.

Exercise 9.1.4 Suppose Alice generates only one pad key K, and uses it to encrypt
two messages 71 and T> (we are assuming they have exactly the same length). Show
that by intercepting E; and E,, Eve can get T; @ T, and hence is closer to the original
text.]

There are a couple of issues with the One-Time-Pad protocol:

1. As Exercise 9.1.4 shows, the generation of a new key K is required each time
a new message is sent. If the same key is used twice, the text can be discovered
through statistical analysis, and hence the name “One-Time-Pad.”

2. The protocol is secure only insofar as the key K is not intercepted by Eve
(remember, Alice and Bob must share the same pad in order to communicate). We
see in the next section that quantum computing comes to the rescue for this crucial
issue.

So far, we have assumed that the pair of keys Kg and K are kept secret. In fact,
only one key was needed because knowledge of the first key implies knowledge
of the second and vice versa.” A cryptographic protocol where the two keys are
computable from one another, thus requiring that both keys be kept secret, is said
to be private key.

There is yet another game in town: in the 1970s, Ronald Rivest, Adi Shamir, and
Leonard Adleman introduced one of the first examples of public-key cryptography,
now simply known as RSA (Rivest, Shamir, and Adleman, 1978). In public-key pro-
tocols, the knowledge of one key does not enable us to calculate the second one. To
be precise, the requirement is that the computation of the second key from the first
should be hard.®

Now, suppose that Bob has computed such a pair of keys Kz and Kp. Further-
more, suppose that brute force trial and error to find Kp given K is totally infeasi-
ble by Eve or anyone else (for instance, there could be an endless list of candidate
keys). Bob’s course of action is as follows: he places the encryption key K, in some
public domain, where anyone can get it. He can safely advertise his protocol, i.e., the
knowledge of ENC(—, —) and DEC(—, —). At the same time, he guards the decryp-
tion key for himself. When Alice wants to send a message to Bob, she simply uses
K on her message. Even if Eve intercepts the encrypted text, she cannot retrieve
Bob’s decryption key, and so the message is safe. This scheme is shown in Figure 9.3.

Let us rephrase the foregoing: once Bob has his magic pair of keys, he finds
himself with two computable functions

Fg(=) = ENC(-, Kg) 9.9)
Fp(~) = DEC(—, Kp) (9.10)

3 In Caesar’s protocol, the decryption key is just the encryption key with changed sign, whereas in the
One-Time-Pad protocol, the two keys are exactly the same.

% By “hard,” we mean that the number of computational steps to get from the first key to the second key
is more than polynomial in the length of the first key.

9.1 Classical Cryptography

KF

T . E : T
@ 4— ENC(—, K.,) ﬁ DEC(-.K,,) +©

Alice - Bob

Figure 9.3. A cryptographic communication scheme with a public K.

such that Fp is the inverse of Fr but cannot easily be calculated from knowledge of
Fr. A function like Fg, which is easy to compute yet hard to invert without extra
information, is known as a trapdoor function. The name is quite suggestive: like a
trapdoor in an old-fashioned Gothic castle, it opens under your feet but does not let
you come back easily. So a trapdoor function is what Bob needs.’

Public-key cryptography has pros and cons. On the plus side, it solves the key
distribution problem that hinders private-key protocols. If Alice wants to send a
message to Bob, she does not need to know Bob’s private key. On the minus side,
all public-key protocols to date rely on the fact that the computation of the pri-
vate key from the public key appears to be hard. This just means that as of yet,
there are no known algorithms that do the job. The possibility is still open for some
breakthrough result in computational complexity that would put all existing public-
key cryptographic schemes out of business.® Finally, public-key protocols tend to be
considerably slower than their private-key peers.

In light of the aforementioned, cryptographers devised a marriage of the two ap-
proaches to achieve the best of both worlds: public-key cryptography is used only to
distribute a key K of some private-key protocol, rather than an entire text message.
Once Alice and Bob safely share K, they can continue their conversation using the
faster private-key scheme. Therefore, for the rest of this chapter, our only concern
is to communicate a binary K of the appropriate length.

Before ending this section, we must expand on the picture of cryptography we
have sketched so far. Secure communication of messages is only one of the issues at
stake. Here are two others:

Intrusion Detection. Alice and Bob would like to determine whether Eve is, in
fact, eavesdropping.

Authentication. We would like to ensure that nobody is impersonating Alice and
sending false messages.

We shall show how to implement protocols that include the first of these fea-
tures. The second feature is also discussed within the context of quantum cryptog-
raphy but is outside the purview of this text.

7 Where can Bob find trapdoor functions? There are, at present, quite a few public-key protocols about,
drawing their techniques from advanced mathematics such as number theory (prime factorization) or
algebraic curves theory (elliptic curves). We invite you to read about them in Koblitz (1994). (Caution:
be prepared to perform some calculations!)

8 Quantum computing itself offers unprecedented opportunities for breaking codes, as the celebrated
result by Shor amply shows (see Section 6.5). For a discussion of the relationship between quantum
computing and computational complexity, see Section 8.3.

267

268

Cryptography

Exercise 9.1.5 Suppose Alice and Bob communicate using some kind of public-key
protocol. Alice has a pair of keys (one public, one private), and so does Bob. Devise
a way in which Alice and Bob can communicate simultaneously while authenticating
their messages. (Hint: Think of encoding one message “inside” another.) |

9.2 QUANTUM KEY EXCHANGE I: THE BB84 PROTOCOL

While discussing the One-Time-Pad protocol, we pointed out that the problem of
securely transmitting the key is a serious one. During the 1980s, two authors came
up with a clever idea that exploits quantum mechanics. This idea formed the basis
of the first quantum key exchange (QKE) protocol.

Before presenting QKE in some detail, let us first see if we can guess which
features of the quantum world are appealing to cryptographers. In the classical case,
Eve is somewhere along the insecure channel listening for some bits of information.
What can she do?

1. She can make copies of arbitrary portions of the encrypted bit stream and
store them somewhere to be used for later analysis and investigations.

2. Eve can listen without affecting the bitstream, i.e., her eavesdropping does not
leave traces.

Now, assume that Alice sends qubits, rather than bits, over some channel.’

1. Eve cannot make perfect copies of the qubit stream: the no-cloning theorem
discussed in Section 5.4 prevents this from happening.
2. The very act of measuring the qubit stream alters it.

At first sight, the points raised above seem like limitations, but from the point
of view of Alice and Bob, they actually turn out to be great opportunities. How?
For one thing, the no-cloning theorem hampers Eve’s ability to use past messages
to conduct her analysis. Even more important, each time she measures the qubit
stream, she disturbs it, allowing Alice and Bob to detect her presence along the
channel.

The first quantum key exchange protocol was introduced by Charles Bennett
and Gilles Brassard in 1984, and hence the name BB84. This section describes this
important protocol.

Alice’s goal is to send Bob a key via a quantum channel. Just as in the One-Time-
Pad protocol, her key is a sequence of random (classical) bits obtained, perhaps, by
tossing a coin. Alice will send a qubit each time she generates a new bit of her key.
But which qubit should she send?

In this protocol, Alice will employ two different orthogonal bases shown in Fig-
ure 9.4

+={ =), [1)) ={[1.0]".[0,1]"} ©.11)

? This chapter is not concerned with hardware implementation of quantum cryptography. That topic is
tackled in Chapter 11. For the time being, suffice it to note that any two-dimensional quantum system
(like spin or photon polarization) could be employed for transmission.

9.2 Quantum Key Exchange I: The BB84 Protocol

Figure 9.4.. 1-'w_o.b.éses used for BB84. N
and
X={N). | M= {i[—l 17, 1]T} (9.12)
a ’ S lv2 T e ' '

We shall refer to the first basis as the “plus” basis and the second as the “times”
basis. Essentially, they are two alternative vocabularies that Alice and Bob will use
to communicate.

In these vocabularies, the states |0) and |1) shall be described by the following
table:

State / Basis + X

0) =) | (9.13)
1) I\

For example, in the + basis, a | —) will correspond to a |0). If Alice wants to work
in the X basis and wants to convey a |1), she will send a | \). Similarly, if Alice sends
a| 1) and Bob measures a | 1) in the + basis, he should record a |1).

This is fine for basic states, but what about superpositions? If Bob measures
photons using the + basis, he will only see photons as | —) or | 1). What if Alice
sends a | ') and Bob measures it in the + basis? Then it will be in a superposition
of states

|/ 1|T>+1|) (9-14)
=— — =) .
V2 V2
In other words, after measurement, there is a 50-50 chance of Bob’s recording a |0)
or a |1). Again, Alice could use the X basis, intending to send a |0), and Bob has a
50-50 chance of recording a |1) and a 50-50 chance of recording a |0). In all, there
are four possible superpositions:

. - 1 1

| \) with respect to + will be 5N =75l

| /) with respect to +, will be %I 1+ \/%I —).
. . i i

| 1) with respect to X, will be 5+ FIN)

|
|
|
® | —) with respect to X, will be %I J) = %I ND)-

269

270 Cryptography

Exercise 9.2.1 Work out what | <), | |), | /), and | \|) would be in terms of the
two bases. [|

Armed with this vocabulary and the inherent indeterminacy of the two bases,
Alice and Bob are ready to start communicating. Here are the steps of the protocol:

Step 1. Alice flips a coin n times to determine which classical bits to send. She
then flips the coin another n times to determine in which of the two bases to send
those bits. She then sends the bits in their appropriate basis.

For example, if # is 12, we might have something like this:

Step 1: Alice sends n random bits in random bases

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Alice’s random bits o 1 1 o0 1 1 1 0 1 0 1 O
Alice’srandombases + + X + + + X + X X X +
Alice sends - 4+ N - 1PN 2N SN e
Quantum channel | | | |
(9.15)

Step 2. As the sequence of qubits reaches Bob, he does not know which basis
Alice used to send them, so to determine the basis by which to measure them he
also tosses a coin n times. He then goes on to measure the qubit in those random
bases.

In our example, we might have something like this:

Step 2: Bob receives n random bits in random measurements

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Bob’srandombases X + X X + X + + X X X +
Bob observes AR N N N A ZA N SN N~
Bob’s bits o 1 1 1 1 O 1 0 1 0 1 0
(9.16)

Here is the catch: for about half of the time, Bob’s basis will be the same as
Alice’s, in which case his result after measuring the qubit will be identical to Alice’s
original bit. The other half of the time, though, Bob’s basis will differ from Alice’s.
In that case, the result of Bob’s measurement will agree with Alice’s original bit
about 50% of the time.

9.2 Quantum Key Exchange I: The BB84 Protocol

@ﬁ* ©
®/

Eve
Figure 9.5. Eve “cutting” the quantum wire and transmitting her own message.

Programming Drill 9.2.1 Write functions that mimic Alice, Bob, and their inter-
actions. Alice should generate two random bit strings of the same length. Call one
BitSent and the other SendingBasis.

Bob will be a function that generates a random bit string of the same length called
ReceivingBasis.

All three of these bit strings should be sent to an “all-knowing” function named
Knuth. This function must look at all three and create a fourth bit string named
BitReceived. This is defined by the following instruction:

BitSent[i], if SendingBasis[i] = ReceivingBasis[i],
BitReceived[i] = (9.17)

random{0, 1}, otherwise.

This random{0, 1} is the classical analog of a qubit collapsing to a bit.
Knuth must furthermore evaluate the percentage of bits that Bob receives accu-
rately.

Let us continue with the protocol: If evil Eve is eavesdropping, she must be read-
ing the information that Alice transmits and sending that information onward to
Bob, as shown in Figure 9.5.

Eve also does not know in which basis Alice sent each qubit, so she must act like
Bob. She will also toss a coin each time. If Eve’s basis is identical to Alice’s, her
measure will be accurate and she will, in turn, send accurate information on to Bob.
If, on the other hand, her basis is different from Alice’s, her bit will be in agreement
with Alice’s only 50% of the time. However, here’s the rub: the qubit has now col-
lapsed to one of the two elements of Eve’s basis. Because of the no-cloning theorem,
Eve does not have the luxury of making a copy of the original qubit and then send-
ing it on (after her probe), so she just sends the qubit after her observation. Now

271

272 Cryptography

Quantum channel

< >

© ® ©

Alice Eve Bob

< >

Public channel

Figure 9.6. Alice and Bob communicating on quantum and public channels, with Eve
eavesdropping.

Bob will receive it in the wrong basis. What are his chances of getting the same bit
Alice has? Answer: His chances are 50-50."

Therefore if Eve intercepts and measures each qubit sent, she will negatively
affect Bob’s chances of agreement with Alice.

Exercise 9.2.2 Give an estimate of how frequently Bob’s bit will agree with Alice’s
if Eve is constantly eavesdropping. |

By computing some simple statistics, a potential intrusion by Eve would be de-
tected. This suggests how to complete BB84. Let us examine the details.

After Bob has finished decoding the qubit stream, he has in his hands a bit stream
of length n. Bob and Alice will discuss which of the n bits were sent and received
in the same basis. They can do this on a public channel, such as a telephone line.
Figure 9.6 is helpful.

Step 3. Bob and Alice publicly compare which basis they used chose at each step.
For instance, he can tell her X, +, X, X, Alice replies by telling him when he was
right, and when he was not. Each time they disagreed, Alice and Bob scratch out
the corresponding bit. Proceeding this way until the end, they are each left with a
subsequence of bits that were sent and received in the same basis. If Eve was not
listening to the quantum channel, this subsequence should be exactly identical. On
average, this subsequence is of length 7.

Step 3: Alice and Bob publicly compare bases used

Bit number 12 3 4 5 6 7 8 9 10 11 12
Alice’srandom bases + + X + + + X + X X X +
Public channel t ¢ ¢ ¢ ¢ ¢ ¢ ¢t ¢ ¢t T+ ¢
Bob’srandombases X + X X + X + + X X X +
Which agree? v v v v v v v v
Shared secret keys 1 1 1 0o 1 0o 1 0

(9.18)

10" Eve does, in fact, have other options. For example, she can “listen in” with a third basis. However,
such considerations would take us too far afield.

9.3 Quantum Key Exchange II: The B92 Protocol

Programming Drill 9.2.2 Continuing with the last programming drill, write a func-
tion named Knuth2 that accepts all three-bit strings and creates a bit string (of pos-
sibly shorter length) called AgreedBits, which is a substring of both BitSent and
BitReceived.

But what if Eve was eavesdropping? Alice and Bob would also like to engage in
some intrusion detection. They want to know if Eve (or anyone else) was listening
in. They do this by comparing some of the bits of the subsequence.

Step 4. Bob randomly chooses half of the 5 bits and publicly compares them with
Alice. If they disagree by more than a tiny percentage (that could be attributed to
noise), they know that Eve was listening in and then sending what she received.
In that case, they scratch the whole sequence and try something else. If the ex-
posed sequence is mostly similar, it means that either Eve has great guessing abil-
ity (improbable) or Eve was not listening in. In that case, they simply scratch out
the revealed test subsequence and what remains is the unrevealed secret private
key.

Step 4: Alice and Bob publicly compare half of the remaining bits

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Shared secret keys 1 1 1 0o 1 0 1 0
Randomly chosen to compare v v v
Public channel ¢ t ¢ ¢
Shared secret keys 1 1 1 0o 1 0 1 0
Which agree? v v o/ v
Unrevealed secret keys: 1 1 0 1

In this protocol, Step 3 has eliminated half of the original qubits sent. So if we
begin with n qubits, only 5 qubits will be available after Step 3. Furthermore, Alice
and Bob publicly display half of the resulting qubits in Step 4. This leaves us with 7
of the original qubits. Do not be disturbed about this, as Alice can make her qubit
stream as large as she needs. Hence, if Alice is interested in sending an m bit key,
she simply starts with a 4m qubit stream.

9.3 QUANTUM KEY EXCHANGE II: THE B92 PROTOCOL

In the previous section, we introduced the first quantum key exchange protocol.
Alice had two distinct orthogonal bases at her disposal. It turns out that the use of
two different bases is redundant, provided one employs a slightly slicker means of
measuring. This simplification results in another quantum key distribution protocol,
known as B92. B stands for its inventor, Charles Bennett, and 1992 is the year it was
published.

273

274 Cryptography

The main idea in B92 is that Alice uses only one nonorthogonal basis. Let us
work out the protocol with the following example:

1
=) M= {[1, 01", —[1. 1]T}. (9.19)
V2
Exercise 9.3.1 Verify that these two vectors are, in fact, not orthogonal. |

Before going into detail, we need to pause and reflect a little. We know that all
observables have an orthogonal basis of eigenvectors. This means that if we consider
a nonorthogonal basis, there is no observable whose basis of eigenvectors is the
one we have chosen. In turn, this means that there is no single experiment whose
resulting states are precisely the members of our basis. Stated differently, no single
experiment can be set up for the specific purpose of discriminating unambiguously
between the nonorthogonal states of the basis.

Alice takes | —) to be 0 and | /) to be 1. Using this language, we can begin the
protocol.

Step 1. Alice flips a coin # times and transmits to Bob the n random bits in the
appropriate polarization with a quantum channel.
Here is an example.

Step 1: Alice sends n random bits in the £ basis

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Alice’srandombits 0 0 1 0 1 o0 1 o0 1 1 1 O
Alice’s qubits - - /J = J - /J = /J J /] -
Quantum channel ¢ v v ¥ v v v ¥ v v U U

(9.20)

Step 2. For each of the n qubits, Bob measures the received qubits in either
the + basis or the X basis. He flips a coin to determine which basis to use.
There are several possible scenarios that can occur:

m If Bob uses the + basis and observes a | 1), then he knows that Alice must have
sent a | /') = |1) because if Alice had sent a | —), Bob would have received a
| =).

m If Bob uses the + basis and observes a | —), then it is not clear to him which
qubit Alice sent. She could have sent a | —) but she could also have sent a |)
that collapsed to a | —). Because Bob is in doubt, he will omit this bit.

m If Bob uses the X basis and observes a | \), then he knows that Alice must have
sent a | —) = |0) because if Alice had sent a |), Bob would have received a
/).

m If Bob uses the X basis and observes a | /), then it is not clear to him which
qubit Alice sent. She could have sent a |) but she could also have sent a | —)
that collapsed to a | /). Because Bob is in doubt, he will omit this bit.

9.4 Quantum Key Exchange lll: The EPR Protocol

Continuing the example, we have the following:

Step 2: Bob receives n random bits in a random basis

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Alice’s random bits — —» [/ —» S > A > S S S
Quantum channel | | | | A |
Bob’srandombases X + X X + X + + X + X +
Bob’s observations N @ —-> J N Ot N > —> S 1t S -
Bob’s bits 0 ? ? 0 1 0 ? ? ? 1 ? ?
9.21)

There are two possible bases that Bob could have used to measure. For each
basis, there are two types of results. For half of those four results, the bit sent is
certain. For the other half, there is uncertainty. Bob must omit the uncertain ones
and keep the others hidden. He must inform Alice of this.

Step 3. Bob publicly tells Alice which bits were uncertain and they both omit
them.

At this point, Alice and Bob know which bits are secret, so they may use those.
But there is one more step if they want to detect whether or not Eve was listening in.
They can, as in Step 4 of BB84, sacrifice half their hidden bits and publicly compare
them. If they do not agree for a significant number, then they know that evil Eve has
been doing her wicked deeds and the entire bit string should be ignored.

Programming Drill 9.3.1 Write three functions that mimic Alice, Bob, and their
interactions. Use functions named Alice92, Bob92, and Knuth92. They should create
bit strings that perform the B92 protocol.

9.4 QUANTUM KEY EXCHANGE IlI: THE EPR PROTOCOL

In 1991, Artur K. Ekert proposed a completely different type of quantum key distri-
bution protocol based on entanglement (Ekert, 1991). We shall present a simplified
version of the protocol and then point to the original version.

We remind the reader that it is possible to place two qubits in the following
entangled state'':

00) + 11
P+ 1h (922)
V2
' In the real world, the entangled pairs will probably be in a state
[01) + [10)
—_. 9.23
7 (9.23)

as explained on page 136 of Chapter 4. When one is measured, they will both collapse to opposite
values. We shall deal with the slightly easier version given in Equation (9.22). It will become apparent
that if we use Equation (9.23), then Alice and Bob will have inverted bit strings. But if we use the
simplified one given in Equation (9.22), they will share the exact same bit string.

275

276 Cryptography

We saw in Section 4.5 that when one of the qubits is measured, they both will col-
lapse to the same value.

Suppose Alice wants to send Bob a secret key. A sequence of entangled pairs of
qubits can be generated and each of our communicators can be sent one of the pairs.
When Alice and Bob are ready to communicate, they can measure their respective
qubits. It does not matter who measures first, because whoever does it first will col-
lapse the other qubit to the same random value. We are done! Alice and Bob now
have a sequence of random bits that no one else has.

There are more sophisticated protocols that will be useful to detect eavesdrop-
pers or if the qubits fell out of entanglement. As in BB84, rather than measure a
qubit in one basis, we can measure it in two different bases, say X and +.

Following the vocabulary of X and + of Section 9.2, we present the protocol.

Step 1. Alice and Bob are each assigned one of each of the pairs of a sequence
of entangled qubits.

When they are ready to communicate, they move on to Step 2.

Step 2. Alice and Bob separately choose a random sequence of bases to measure
their particles. They then measure their qubits in their chosen basis.

An example might look like this:

Step 2: Alice and Bob measure in each of their random bases

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Alice’srandombases X X + + X + X + + X + X
Alice’s observations ~ N —»> 4+ J —> N —»> —> S —> J
Bob’srandombases X + + X X + + + + X X +
Bob’s observations A . N
(9.24)

Step 3. Alice and Bob publicly compare what bases were used and keep only
those bits that were measured in the same basis.

Step 3: Alice and Bob publicly compare their bases

Bit number 1 2 3 4 5 6 7 8 9 10 11 12
Alice’srandombasess X X + + X + X + + X + X
Public channel Tt ¢ ¢ ¢ ¢ ¢ ¢ ¢t ¢ ¢ ¢
Bob’srandombases X + + X X + + + + X X +
Which agree? v v v v v vV

(9.25)

9.5 Quantum Teleportation

If everything worked fine, Alice and Bob share a totally random secret key. But
problems could have occurred. The entangled pairs could have been exposed to the
environment and become disentangled,'> or wicked Eve could have taken hold of
one of the pairs, measured them, and sent along disentangled qubits.

We solve this problem by doing what we did in Step 4 of BB84. Alice or Bob
randomly choose half of the remaining qubits and publicly compare the bits (not
the bases). If they agree, then the last quarter of hidden qubits are probably good.
If more than a small part disagree (from noise), then we must suspect Eve is
up to her evil ways and our friendly communicators must throw away the entire
sequence.

Ekert’s original protocol is even more sophisticated. For Step 4, rather than mea-
suring the qubits in two different bases, they will be measured in three different
bases. As in BB84, Alice and Bob will publicly compare the results of half of their
measured sequences to detect if the qubits are still entangled. They will then per-
form certain tests on the results to determine if they were still entangled. If not, then
they throw away the entire sequence.

The test that they will perform is based on John Bell’s famous Bell’s inequality, '
which is central to the foundations of quantum mechanics.

Bell’s inequality is a way of describing the results of measurements of three dif-
ferent bases on two particles. If the particles are independent of each other, like
classical objects, then the measurements will satisfy the inequality. If the particles
are not independent of each other, i.e., they are entangled particles, then Bell’s in-
equality fails.

Ekert proposed to use Bell’s inequality to test Alice and Bob’s bit sequences
to make sure that when they were measured they were, in fact, entangled. This is
done by publicly comparing a randomly chosen part of the sequences. We are going
to look at one of three possible directions x, y, and z of spin of particles. If the re-
vealed part of the sequence respects Bell’s inequality, then we know that the qubits
are not entangled (i.e., not independent) and they are acting like classical objects.
In such a case, we throw away the entire sequence and start over. If the revealed
portion fails Bell’s inequality, then we can assume that the whole sequence was
measured when it was in a quantum entangled state, and hence the sequence is still
private.

9.5 QUANTUM TELEPORTATION

In the last section, we became experts at dealing with entangled qubits. We would
like to use this expertise to perform quantum teleportation.

Definition 9.5.1 Quantum teleportation is the process by which the state of an arbi-
trary qubit is transferred from one location to another.

12 Entanglement is indeed a volatile property. See Chapter 11 for a further discussion of entanglement
and what happens when it is exposed to the environment.

13 In fact, a similar inequality that describes classical independent objects was noticed in the nineteenth
century by one of the forefathers of computer science, George Boole. Boole called them “conditions
of possible experience.” See Pitowsky (1994).

277

278

Cryptography

It is important to realize that what we describe in this section is not science fic-
tion. Quantum teleportation has already been performed in the laboratory. The fu-
ture of teleportation is, indeed, something to look forward to.

Recall that in Section 5.4 we met the no-cloning theorem, which states that we
are not able to make a copy of the state of an arbitrary qubit. That means that
when the state of the original qubit is teleported to another location, the state of
the original will necessarily be destroyed. As stated on page 166, “Move is possible.
Copy is impossible.”

Before moving on to the protocol, some preliminaries must be dealt with. In our
journey, we have found that working with a cleverly chosen noncanonical basis and
switching between the canonical basis and the noncanonical basis is helpful. When
working with a single qubit, we worked with the canonical basis

{10), 11)} (9.26)

and the noncanonical basis
{ 10) +11) 10) — 1) }
V2 V2
The teleportation algorithm will work with two entangled qubits, one held by Alice
and one held by Bob. The obvious canonical basis for this four-dimensional space is

{I0403B),10413), [1403), [1415)}. (9.28)

A noncanonical basis, called the Bell basis in honor of John Bell, consists of the
following four vectors:

[041p) + [140B)

(9.27)

Wty = = : (9.29)
W) = M%, (9.30)
&) = W, (9.31)
17 = W. (9.32)

Every vector in this basis is entangled.

In order to show that these vectors form a basis, we must show that they are
linearly independent (we leave this to the reader) and that every vector in C? ® C?
can be written as a linear combination of vectors from the Bell basis. Rather than
showing it for every vector in C? ® C2, we show it is true for every vector in the
canonical basis of C> ® C?:

1
V2
1
V2

10405) = —=(19") + 7)), (9.33)

1alp) = (|97) — [D7)), (9.34)

9.5 Quantum Teleportation

1
041p) = — +), 9.35
1041p) \/Z(Nj)+ W) (9.35)
1
1408) = — Y — [UTY)). 9.36
[140p) ﬁ(NJ) —[¥7)) (9.36)

Because every vector in C2 ® C? is a linear combination of canonical basis vectors
and every canonical basis vector is a linear combination of Bell basis vectors, we
have that the Bell basis is, in fact, a basis.

How are the Bell basis vectors formed? In the two-dimensional case, we saw that
the elements of the noncanonical basis can be formed using the Hadamard matrix.
Remember that H does the following:

0 1 0y — |1
|0) —> 19 +11) and |1) — 0~ >. (9.37)
V2 V2
In the four-dimensional case, we need something a little more complicated:

%) ¥

LH |
(9.38)

1y)
S

It can easily be seen that this quantum circuit with the appropriate inputs creates
the elements of the Bell basis:

100) —> |®T), 01) — W), 110) —> 7)), 111) — [¥7).
(9.39)
We now have enough tool in our toolbox to move ahead with the quantum tele-

portation protocol. Alice has a qubit |/) = «|0) + B|1) in an arbitrary state that she
would like to teleport to Bob.

Step 1. Two entangled qubits are formed as |®*). One is given to Alice and one
is given to Bob.
We may envision these three qubits as three lines.

1Y)
A
(H]
(9.40)
B D
i f f

l¢o) lo1) l2)

279

280 Cryptography

The top two lines are in Alice’s possession and the bottom line is in Bob’s pos-
session. The states are as follows:

lpo) = |¥) ®104) ® [0) = |¥) ®10403), (9.41)
[04) +114)

= ——— ®|0p), 9.42

lo1) = 1Y) NG 105) (9.42)

[040B) + [141p)
V2

[0408) + [141p)
V2

_ «[0)(10408) + [1415)) + BI1)(1040p) + [1415))
%)

lg2) = [¥) @ |9F) = [¢) ® (9.43)

= (al0) +B1)) ®

Step 2. Alice lets her |y) interact with her entangled qubit.
Steps 1, 2, and 3 can be seen in the following diagram:

V)

(H] A

B
>

(9.44)

D
N>

f f o o f
o) lo1) lp2) l3) |p4)

We have

«[0)(10408) + [1415)) + BI1)(11408) +10413))
7 ,

1
lpa) = 5(“(|0) +11))(1040B) 4+ [141p)) + B(10) — [1))(11408) + [0413))

lp3) =

= %(a(|000) +[011) + [100) + [111)) + B(]010) + [001) — [110) — |101))).
(9.45)

9.5 Quantum Teleportation

Regrouping these triplets |xyz) in terms of |xy), which is in Alice’s possession,
we have

1
|p4) = E(IOO)(aI()) + BI1)) + 101)(B10) + 1))

+110)(«]0) — BI1)) + 11)(=BI0) + a[1))). (9.46)

So the system of three qubits is now in a superposition of four possible states.

Step 3. Alice measures her two qubits and determines to which of the four pos-
sible states the system collapses.

At the moment Alice measures her two qubits; all three qubits collapse to
one of four possibilities. So if she measures |[10) then the third qubit is in state
a|0) — BI1).

There are two problems to deal with:

(a) Alice knows this state but Bob does not; and
(b) Bob has «|0) — 8|1}, not the desired «|0) + 8|1). Both problems are solved
by Step 4.

Step 4. Alice sends copies of her two bits (not qubits) to Bob who uses that
information to achieve the desired state |/).

In other words, if Bob receives |01) from Alice, he then knows that his qubit is
in state

o
al0) — Bl1) = ; (9:47)
—B
hence he should act on his qubit with the following matrix:

10 o o
= = al0) + BI1) = |y). (9.48)
0-1||-8 B

In detail, Bob must apply the following matrices upon receiving information
from Alice:

Bob’s reconstruction matrices

Bits received |00) |01) |10) [11)
(9.49)
1 0 01 1 0 0 1
Matrix to apply
01 1 0 0 -1 -1 0

After applying the matrix, Bob will have the same qubit that Alice had.

281

282 Cryptography

The following space—time diagram might be helpful. We use the convention that
straight arrows correspond to the movement of bits and curvy arrows correspond to
qubits on the move.

[¥)
o Stepd ° reconstruct |yr)
4
Step 3 measure
B
Time
Step2 |y), Ainteract
A
o Stepl [yr) A, Bentangled
Alice Bob
[]]
Space
(9.50)

Notice that |1/) moves from the lower-left corner in Alice’s possession to the upper-
right corner in Bob’s possession. Mission accomplished!

Several points should be made about this protocol:

m Alice is no longer in possession of |¢). She has only two classical bits.

m As we have seen, to “teleport” a single quantum particle, Alice has to send two
classical bits. Without receiving them, there is no way that Bob can know what
he has. These classical bits travel along a classical channel and thus they prop-
agate at finite speed (less than the speed of light). Entanglement, in spite of its
undisputable magic, does not allow you to communicate faster than the speed of
light. Einstein’s theory of relativity would not permit such communication.

9.5 Quantum Teleportation

B « and B were arbitrary complex numbers satisfying |«|?> 4 |8|> = 1. They could
have had an infinite decimal expansion. And yet, this potentially infinite amount
of information has gone from Alice to Bob across the universe by passing only
two bits. However, it is important to realize that this potentially infinite amount
of information is passed as a qubit and useless to Bob. As soon as he measures
the qubit, it will collapse to a bit.

m Someone might argue that calling all the foregoing teleportation is a bit of a
stretch. Indeed, no particle has been moved at all. However, from the point
of view of quantum mechanics, two particles having exactly the same quantum
state are, from the standpoint of physics, indistinguishable and can therefore be
treated as the same particle. If you are configured like Captain Kirk down to the
minutest details, you are Captain Kirk!

Exercise 9.5.1 What about Eve? She can certainly tap into the classical channel
and snatch the two bits. But will it be useful to her? |

Exercise 9.5.2 There was nothing special about Alice using |®*) to entangle her
|). She could have just as easily used any of the other three Bell vectors. Work out
the result if she had used |® 7). [|

References: A comprehensive text on classical cryptography is Schneier (1995). For
a more mathematical treatment, see Koblitz (1994). A general introduction to quan-
tum cryptography is Lomonaco (2001).

BB84 was first described in Bennett and Brassard (1984). B92 was the first pre-
sentation of Bennett (1992). The EPR protocol was first described in Ekert (1991).

A short history of quantum cryptography can be found in Brassard and Crépeau
(1993), and a bibliography in Brassard (1993).

Quantum teleportation was first presented in Bennett et al. (1993).

283

284

10

Information Theory

1 find that a great part of the information I have
was acquired by looking up something
and finding something else on the way.

Franklin P. Adams

The topic of this chapter is quantum information, i.e., information in the quantum
world. The material that is presented here lies at the core of a variety of areas within
the compass of quantum computation, such as quantum cryptography, described in
Chapter 9, and quantum data compression. As quantum information extends and
modifies concepts developed in classical information theory, a brief review of the
mathematical notion of information is in order.

In Section 10.1, we recall the basics of classical information theory. Section 10.2
generalizes this work to get quantum information theory. Section 10.3 discusses clas-
sical and quantum data compression. We conclude with a small section on error-
correcting codes.

10.1 CLASSICAL INFORMATION AND SHANNON ENTROPY

What is information really? In the mid-forties, an American mathematician named
Claude Shannon set out to establish a mathematical theory of information on a firm
basis. To see this, we use Alice and Bob. Alice and Bob are exchanging messages.
Let us say that Alice can only send one of four different messages coded by the
letters A, B, C, and D.

In our story, the meaning of the four letters is as following:

Symbol Meaning

A “I feel sad now”

B “I feel angry now” (10.1)
C “I feel happy now”

D “I feel bored now”

10.1 Classical Information and Shannon Entropy 285

Constant Uniform
1 1
0.8 0.8
0.6 0.6
0.4 0.4
“H 0 0N
0 0 .
A B o] D A B c D
General
;
0.8
0.6 05
0.4
0.25
0.2 0.125 0.125
0 N
A B c D

Figure 10.1. Three possible probability distributions.

Bob is a careful listener, so he keeps track of the frequency of each letter. By
observing N consecutive messages from Alice, he reports the following:

A appeared N, times
B appeared Np times
C appeared Nc times
D appeared Np times

where N4 + Np + Nc + Np = N. Bob concludes that the probability of each letter
showing up is given by
Ny

Py =8 pB =0 MO =T amd D)= (102)

The table that associates with each basic symbol its probability is known as the
probability distribution Function (pdf for short) of the source. Of course, the prob-
ability distribution may have different shapes (Figure 10.1). For instance, Alice may
be always happy (or at least say so to Bob), so that the pdf looks like

0 0 N 0
P(A)=N=0’ P(B)INIOv P(C)=N=1a and P(D)=N=0-

(10.3)

286

Information Theory

Such a pdf is called the constant distribution. In this case, Bob knows with cer-
tainty that the next symbol he will receive from Alice is C. It stands to reason that in
this scenario C does not bring any new information: its information content is zero.

On the opposite side of the spectrum, let us assume that Alice is very moody, in
fact totally unpredictable, as far as her emotional state goes. The pdf will then look
like

pB =7 pB)=; pC=7. and p(D)=1. (104)

Such a pdf is called the uniform distribution. In this case, when Bob will observe
the new symbol from Alice, he will gain information, indeed the maximum amount
of information this limited alphabet could convey.

These two scenarios are just two extremes among infinitely many others. For
instance, the pdf might look like

P(A):%, P(B):%, P(C):é, and P(D):é. (10.5)

It is quite obvious that this general scenario stands in between the other two, in
the sense that its outcome is less certain than the one afforded by the constant pdf,
but more so than the uniform pdf.

We have just found a deep connection between uncertainty and information. The
more uncertain the outcome, the more Bob will gain information by knowing the
outcome. What Bob can predict beforehand does not count: only novelty brings
forth information!' The uniform probability distribution represents the greatest un-
certainty about the outcome: everything can happen with equal likelihood; likewise,
its information content is the greatest.

It now becomes clear what we need: a way to quantify the amount of uncertainty
in a given probability distribution. Shannon, building on classical statistical thermo-
dynamics, introduced precisely such a measure.

Definition 10.1.1 7The Shannon entropy of a source with probability distribution { p;}
is the quantity

n n 1
Hy == pixlog(p) =) pi xlog, (;), (10.6)
i=1 i=1 L

where the following convention has been adopted: 0 x log,(0) = 0.

Note: The minus sign is there to make sure that entropy is always positive or zero,
as shown by the following exercise.

Exercise 10.1.1 Prove that Shannon entropy is always positive or zero. |

I After all, this is just common sense. Would you bother reading a daily newspaper if you knew its content
beforehand?

2 The calculus savvy reader will promptly recognize the soundness of this convention: the limit of the
function y = xlog,(x) is zero as x approaches zero. There is another more philosophical motivation: if
a symbol is never sent, its contribution to the calculation of entropy should be zero.

10.1 Classical Information and Shannon Entropy

Why should we believe that the formula presented in Equation (10.6) does in-
deed capture the uncertainty of the source? The better course is to calculate H for
each of the aforementioned scenarios above.

Let us compute the entropy for the constant pdf:

Hg = —0 x log,(0) — 0 x log,(0) — 1 x log,(1) — 0 x log,(0)
= —log,(1) = 0. (10.7)
As we see, the entropy is as low as it can be, just as we would expect. When the

entropy equals zero, that means there is absolutely no uncertainty in the source.
Let us move to the uniform pdf:

He — 1 I 1 1 I 1 1 I 1 1 1 1
s= T X108 | 3 <%\ 3 <%\ i W1
1

This makes sense. After all, because Bob has no real previous information, he
needs no less than two bits of information to describe which letter is being sent
to him.

And now the general scenario:

He — 1 I 1 1 i 1 1 i 1
5= 75 X108 | 5 7 <%\ g g *%%2\g
1 1
—g* log, <§> =1.75. (10.9)

We have thus verified, at least for the preceding examples, that the entropy formula
does indeed classify the amount of uncertainty of the system.

Exercise 10.1.2 Create a fourth scenario that is strictly in between the general pdf
in Equation (10.9) and the uniform distribution. In other words, determine a pdf for
the four-symbol source whose entropy verifies 1.75 < H < 2. |

Exercise 10.1.3 Find a pdf for the four-symbol source so that the entropy will be
less than 1 but strictly positive. |

Summing up, we can recapitulate the above into two complementary slogans:

Greater entropy means greater uncertainty

(10.10)
Greater entropy means more information

Programming Drill 10.1.1 Write a simple program that lets the user choose how
many letters the source alphabet has, and then enter the probability distribution. The
program should visualize it, and compute its Shannon entropy.

287

288

Information Theory

10.2 QUANTUM INFORMATION AND VON NEUMANN ENTROPY

The previous section dealt with the transmission of classical information, i.e., infor-
mation that can be encoded as a stream of bits. We are now going to investigate to
what extent things change when we are concerned with sources emitting streams of
qubits.

As it turns out, there is a quantum analog of entropy, known as von Neumann
entropy. Just as Shannon entropy measures the amount of order in a classical sys-
tem, von Neumann entropy will gauge order in a given quantum system. Let us set
the quantum scenario first. Alice has chosen as her quantum alphabet a set of nor-
malized states in C™:

If she wishes to notify Bob of her moods, as in the previous section, she can choose
four normalized states in some state space. Even the single qubit space is quite
roomy (there are infinitely many distinct qubits), so she could select the following
set:

1 1
{IA) =10), B) = 1), |C) = —=|0) + —=I1), |D) =

1
75 7 —I0>——I1)}-

V2
(10.12)

Notice that Alice does not have to choose an orthogonal set of states, they simply
need to be distinct.
Now, let us assume that she sends to Bob her states with probabilities:

p(lw)) = p1, p(lwa)) = pa, ..., p(lwn)) = pa- (10.13)

We can associate with the table above a linear operator, known as the density oper-
ator, defined by the following expression:

D = pilw){wi] + palwz){wa| 4 - - - + palwy) (wyl. (10.14)

D does not look like anything we have met so far. It is the weighted sum of a basic
expression of the form |w)(w|, i.e., products of a bra with their associated ket. To
get some sense for what D actually does, let us study first how its building blocks
operate. |w;)(w;| acts on a ket vector |v) in the following way:

lw;) (w; [(Jv) = ((wi|v))|w;). (10.15)

In plain words, the result of applying |w;){w;| to a generic ket |v) is simply the
projection of |v) onto |w;), as shown in Figure 10.2. The length of the projection is
the scalar product (w;|v) (we are here using the fact that all w;’s are normalized).

3 The origin of the density operator lies in statistical quantum mechanics. The formalism that we have
presented thus far works well if we assume that the quantum system is in a well-defined state. Now,
when studying large ensembles of quantum particles, the most we can assume is that we know the
probability distribution of the quantum states of the individual particles, i.e., we know that a randomly
selected particle will be in state |w;) with probability py, etc.

10.2 Quantum Information and von Neumann Entropy

| ws)

ilm"m"-

>

(i) i)

Figure 10.2. The projection of |v) onto |w;).

Exercise 10.2.1 Assume Alice always sends only one vector, say, wi. Show that D
in this case just looks like |wy){(w1]. []

Now that we know how each component acts on a ket, it is not difficult to under-
stand the entire action of D. It acts on ket vectors on the left:

Dlv) = pi{wi|v)|wi1) + pa(walv)|wa) + - - + pul{wnlv)|wy). (10.16)

In words, D is the sum of projections onto all the |w;)’s, weighted by their respective
probabilities.

Exercise 10.2.2 Show that the action we have just described makes D a linear op-
erator on kets (check that it preserves sums and scalar multiplication). |

As D is now a legitimate linear operator on the ket space, it can be represented
by a matrix, once a basis is specified. Here is an example:

Example 10.2.1 Let |w;) = %|O) f'l) and |w,) = [|0) %H). Assume that

|wi) is sent with probability p; = % and |w,) is sent with probability p, = %. Let us
now describe the corresponding density matrix in the standard basis. In order to do
s0, we just compute the effect of D on the two basis vectors:

1 3 11
D(|0)) = Z<w1|0)|wl) + Z<w2|0)|w2) = <ZE) w) + <4[> [wy)
—¥L< 0+ —=1 Q+iL(Lm—iﬂQ
42\V2 V2 W2 \v2 ' V2
1 3 1 1
= (§|0> + §|0)) + (§|1) - §|1)) = §|0> - le) (10.17)
DY) = w1 3 unll = 3
(11)) = Z<w1| Yw) + 4_1<w2| Mwz) = <4 f) |lwy) — <4f> [wsz)
—¥L< 0+ —= 1))—ilﬁim—imo
BN ANC RS W2 \v2 ' V2
1 1 3 1 1
= (§|0> - §|0>) + (gm + g|1>) = —710+ 511). (10.18)

289

290

Information Theory

The density matrix is thus
1
Y. (10.19)

O

Exercise 10.2.3 Write the density matrix of the alphabet in Equation (10.12),
where

p(lA)) = % p(1B) = é p(IC)) = L and p(ID)) = % (10.20)

6’
[|

D also acts on bra vectors on the right, using a mirror recipe:
(D = pi(wlwi){wil + p2(vlwa|) (w2 + -+ + pulviwa) (wal. (10.21)

What we have just found, namely, that D can operate on both bras and kets at the
same time, suggests that we combine the action on the left and the right in one shot.
Given any state |v), we can form

(v| Dlv) = pilwlwi) > + pal(vlwa)? + - - + pal(v]wy) . (10.22)

The meaning of the number (v|D|v) will become apparent in a moment. Suppose
Alice sends a state and Bob performs a measurement whose possible outcomes is
the set of orthonormal states

{lvr), [v2), ..., [oa)}- (10.23)

Let us compute the probability that Bob observes the state |v;).

Alice sends |wy) with probability p;. Each time Bob receives |wy), the probabil-
ity that the outcome is |v;) is precisely |(v;|w1)|>. Thus pi|(v;|w1)|? is the probability
that Alice has sent |w;) and Bob has observed |v;). Similarly for |w;), ..., |w,). Con-
clusion: (v;|D|v;) is the probability that Bob will see |v;) regardless of which state
Alice has sent him.

Example 10.2.2 Assume Alice has a quantum alphabet consisting of only two sym-
bols, the vectors

1 1
= —0)4+ —]|1 10.24
[wy) ﬁl) ﬁ') ()
and
lwz) = 10). (10.25)

Notice that, unlike Example 10.2.1, here the two states are not orthogonal. Alice

sends |wq) with frequency p; = % and |w;) with frequency p, = % Bob uses the

standard basis {|0), |1)} for his measurements.

10.2 Quantum Information and von Neumann Entropy
The density operator is

1 2
D= §|v1>(vl|+§|v2)(v2|- (10.26)

Let us write down the density matrix in the standard basis:

1 (1 1 2 5 1
D(10)) = —= (—=10) + —=[1)) + 210) = Z[0) + ~|1 10.27
(10)) 3)\/§<\/§|)+\/§I))+3|) 6|)+6|>, ()
1 (1 1 1 1
D(1)) = ——= (—=10) + —=[1)) +0]0) = ~[0) + —|1). 10.28
(11)) 3ﬁ<ﬁ >+ﬁ|>)+|> gl0) +2lb (10.28)

The density matrix is thus

3 1
D=|°% °© (10.29)
11
6 6
Now we can calculate (0| D|0) and (1| D|1):
/DIy = [L,0]| ¢ °© =, (10.30)
1 10]o 6
5 1
22 0 1
a|pjy =[o,1]| ¢ ° =—. (10.31)
1101 6
If we calculate Shannon entropy with respect to this basis, we get
1 1 5 5
O

Even though Alice is sending |w;)’s, from Bob’s standpoint, the source behaves
as an emitter of states

|U1>, |U2)»-~'1 |Un> (1033)
with probability distribution given by
(vi[Dlvr), (V2] Dlv2), . .., (va| Dlvy). (10.34)

It would be tempting to conclude that the source has entropy given by the same
recipe as in the classical case:

- Z(vi|D|vi) x log, ((v;| D|v;)) . (10.35)

291

292

Information Theory

However, things are a bit more complicated and more interesting also. Bob can
choose different measurements, each associated with its own orthonormal basis. The
probability distribution will change as he changes basis, as shown by the following
example.

Example 10.2.3 Suppose Bob settles for the basis

1 1

= —10) + —|1), 10.36

lvr) \/§|)+ ﬁl) ()
1 1

= —0) — —|1). 10.37

[v2) ﬁ') ﬁl) ()

Let us calculate (v;|D|v;) and (v,|D|v;) (the density matrix is the same as in Exam-
ple 10.2.1):

1 172 & _% 2
Dlv) = | —, — 2=z, 10.38
) [ﬁ «/E} 1ol | 3 (103%)
6 6| v2
5 1 1
1 1 e 7 1
Dlvy) = | —, —— =_. 10.39
ealblvz) [ﬁ ﬁ] ol |3 (1039)
6 6 |)
Let us calculate the Shannon entropy for this pdf:
1 1 2 2
~3 log, <§) ~3 log, (§> = 0.9183. (10.40)

Compared to Equation (10.32), the Shannon entropy, as perceived by Bob, has
increased, because the pdf is less sharp than before. The source, however, hasn’t
changed at all: quite simply, Bob has replaced his “pair of glasses” (i.e., his measure-
ment basis) with a new one! |

Exercise 10.2.4 Write the matrix of the general density operator D described by
Equation 10.14 in the standard basis of C”, and verify that it is always hermitian.
Verity that the trace of this matrix, i.e., the sum of its diagonal entries, is 1. [|

We can ask ourselves if there is a privileged basis, among the ones Bob can
choose. Put differently, is there a basis that minimizes the calculation of Shannon
entropy in Equation (10.35)? It turns out that such a basis does exist. Because the
density operator is hermitian, we saw using the spectral theorem for self-adjoint op-
erators on page 64, that it can be put in diagonal form. Assuming that its eigenvalues
are

)"17)\‘27"'1)‘41» (10.41)

we can then define the von Neumann entropy as follows:

10.2 Quantum Information and von Neumann Entropy

Definition 10.2.1 The von Neumann entropy* for a quantum source represented by
a density operator D is given by

Hy ==Y hilog, (). (10.42)
1

where A1, Ay, . .., A, are the eigenvalues of D.

If Bob selects the basis

{ler). lez). ... len)) (10.43)

of orthonormal eigenvectors of D corresponding to the eigenvalues listed in Equa-
tion (10.47), the von Neumann entropy is precisely identical to the calculation of
Shannon entropy in Equation (10.40) with respect to the basis of eigenvectors. Why?
If you compute

(e1] Dler), (10.44)
you get
(er|r1e1) = A (10.45)

(we have used the orthonormality of |e;)).
The same holds true for all eigenvectors: the eigenvalue A; is the probability that
Bob will observe |e;) when he measures incoming states in the eigenvector basis!

Example 10.2.4 Let us continue the investigation we began in Example 10.2.2. The
density matrix D has eigenvalues

A =0.1273 and A, =0.8727 (10.46)
corresponding to the normalized eigenvectors
ler) = +0.2298]0) — 0.9732]|1) and |e;) = —0.9732|0) — 0.2298|1).
(10.47)
The von Neumann entropy of D is given by
Hy(D) = —0.1273 % 10g,(0.1273) — 0.8727 * 10g,(0.8727) = 0.5500. (10.48)
Let us verify that von Neumann’s entropy is identical to Shannon’s entropy when

calculated with respect to the orthonormal basis of eigenvectors of D:

0.2298
(e1] Dler) = [0.2298, —0.9732] —0.1273, (10.49)

—0.9732

(=) =) 19/}
=N =N

4 Most texts introduce von Neumann entropy using the so-called Trace operator, and then recover our
expression by means of diagonalization. We have sacrificed mathematical elegance for the sake of
simplicity, and also because for the present purposes the explicit formula in terms of the eigenvalues is
quite handy.

293

294

Information Theory

—-0.9732

(2| Dles) = [—0.9732, —0.2298] = 0.8727. (10.50)

A= Sl
A= =

—0.2298

Observe that the sum of eigenvalues 0.8727 4 0.1273 is 1, and both eigenvalues
are positive, as befits true probabilities. Also notice that the entropy is lower than
the one calculated using the other two bases; it can indeed be proven that it is as low
as it can possibly be. |

Exercise 10.2.5 Go through all the steps of Examples 10.2.1, 10.2.2, and 10.2.3,
assuming that Alice sends the same states, but with equal probability.

Note that for this exercise, you will need to calculate eigenvectors and eigenval-
ues. In Chapter 2 we stated what eigenvalues and eigenvectors are, but not how to
compute them for a given symmetric or hermitian matrix. To complete this exercise,
you have two equally acceptable options:

1. Look up any standard reference on linear algebra for the eigenvalues formula
(search for “characteristic polynomial”).

2. Use a math library to do the work for you. In MATLAB, for instance, the
function eig is the appropriate one (Mathematica and Maple come equipped with
similar functions). []

As we have said, Alice is at liberty in choosing her alphabet. What would happen
if she selected a set of orthogonal vectors? The answer is in the following pair of
exercises.

Exercise 10.2.6 Go back to Example 10.2.1. The two states |w;) and |w,) are a pair
of orthonormal vectors, and thus an orthonormal basis for the one qubit space. Show
that they are eigenvectors for the density matrix given in Equation (10.19), and thus
Bob’s best choice for measuring incoming messages. |

Exercise 10.2.7 This exercise is just the generalization of the previous one, in
a more formal setting. Suppose Alice chooses from a set of orthonormal state
vectors

{wi), [wa), ..., [wy)) (10.51)

with frequencies

PL. D2y P (10.52)

to code her messages. Prove that in this scenario each of the |w;)’s is a normalized
eigenvector of the density matrix with eigenvalue p;. Conclude that in this case the
source behaves like a classical source (provided of course that Bob knows the or-
thonormal set and uses it to measure incoming states). |

In the wake of the two foregoing exercises, we now know that orthogonal quan-
tum alphabets are the less surprising ones. Let us go back briefly to Example 10.2.2:
there Alice’s choice is a nonorthogonal set. If you calculate explicitly its von Neu-
mann entropy, you will find that it is equal to 0.55005, whereas the classical entropy

10.3 Classical and Quantum Data Compression

for a source of bits such that p(0) = % and p(1) = % is 0.91830.

We have just unraveled yet another distinct feature of the quantum world: if
we stick to the core idea that entropy measures order, then we come to the in-
escapable conclusion that the quantum source above exhibits more order than its
classical counterpart. Where does this order come from? If the alphabet is orthog-
onal, the two numbers are the same. Therefore, this apparent magic is due to the
fact that there is additional room in the quantum via superposition of alternatives.’
Our discovery is a valuable one, also in light of the important connection between
entropy and data compression, the topic of the next section.

Programming Drill 10.2.1 Write a program that lets the user choose how many qubits
the alphabet of the quantum source consists of, enter the probability associated with
each qubit, and compute von Neumann entropy as well as the orthonormal basis for
the associated density matrix.

10.3 CLASSICAL AND QUANTUM DATA COMPRESSION

In this section, we introduce the basic ideas of data compression for bit and qubit
streams. Let us begin with bits first.

What is data compression? Alice has a message represented by a stream of bits.
She wants to encode it either for storage or for transmission in such a way that the
encoded stream is shorter than the original message. She has two main options:

B Lossless data compression, meaning that her compression algorithm must have
an inverse that perfectly reconstruct her message.

E Lossy data compression, if she allows a loss of information while compressing
her data.

In data compression, a notion of similarity between strings is always assumed,
i.e., a function that enables us to compare different strings (in our scenario, the
message before compression and the one after it has been decompressed):

w:{0,1)* x {0, 1} — R* (10.53)
such that

m (s, s) = 0 (astring is identical to itself), and
m u(s1, $2) = u(s2, s1) (symmetry of similarity).°

Armed with such a notion of similarity, we can now define compression.

> The difference between entropy in classical and quantum domains becomes even sharper when we
consider composite sources. There entanglement creates a new type of order that is reflected by the
global entropy of the system. If you want to know more about this phenomenon, go to Appendix E at
the end of the book.

© There are several notions of similarity used by the data compression community, depending on the
particular needs one may have. Most are actually distances, meaning that they satisfy the triangular
inequality, besides the two conditions mentioned here.

295

296

Information Theory

Definition 10.3.1 Let u be a measure of similarity for binary strings, € a fixed thresh-
old, and len() the length of a binary string. A compression scheme for a given source
S is a pair of functions (ENC, DEC) from the set of finite binary strings to itself, such
that

m len(ENC(s)) < len(s) on average, and
B u(s, DEC(ENC(s))) < € for all sequences.

If u(s, DEC(ENC(s))) = O for all strings, then the compression scheme is lossless.

In the first item, we said “on average,” in other words, for most messages sent by
the source. It is important to realize that compression schemes are always coupled
with a source: if the source’s pdf changes, a scheme may become useless.

Which of the two options listed in Definition 10.3.1 is actually chosen depends
on the problem at hand. For instance, if the sender wants to transmit an image, she
may decide to go for lossy compression, as small detail losses hardly affect the recon-
structed image.” On the other hand, if she is transmitting or storing, say, the source
code of a program, every single bit may count. Alice here does not have the luxury
to waste bits; she must resort to lossless compression.® As a rule of thumb, lossy
compression allows you to achieve much greater compression (its requirements are
less stringent!), so if you are not concerned with exact reconstruction, that is the
obvious way to go.

There is a fundamental connection between Shannon entropy and data compres-
sion. Once again, let us build our intuition by working with the general pdf given in
Section 10.1.

Note: We make an assumption throughout this section: the source is indepen-
dently distributed. This simply means that each time Alice sends a fresh new symbol,
the probability stays the same and there is no correlation with previous sent symbols.

Alice must transmit one of four symbols. Using the binary alphabet 0, 1, she can
encode her A, B, C, D using log,(4) = 2 bits. Suppose she follows this coding

A 00
B 01
(10.54)
Cc 10
D 11
How many bits will she send on average per symbol?
1 1 1 1
2X =4+2x-+2x -+2x-=2 10.
><2+ x4—|— ><8+ X3 (10.55)

Doesn’t sound too good, does it? Alice can definitely do better than that. How?
The core idea is quite simple: she will use an encoding that uses fewer bits for

7 The extremely popular JPEG and MPEG formats, for images and videos, respectively, are two popular
examples of lossy compression algorithms.

8 ZIP is a widely popular application based on the so-called Lempel-Ziv lossless compression algorithm,
generally used to compress text files.

10.3 Classical and Quantum Data Compression

symbols that have a higher probability. After a little thinking, Alice comes up with
this encoding:

A 0
B 11
— (10.56)
C 100
D 101

Let us now compute the average number of bits per symbol Alice is going to
transmit using this encoding:

1 1 1 1
Ix=-4+2x- = - =1.75. 10.
><2-|— x4+3x8+3x8 75 (10.57)

As you have already noticed, this is precisely the value we have found for the en-
tropy of the source.

Exercise 10.3.1 Try to determine the most efficient coding for a four-symbol
source whose pdf looks like

P(A) = % P(B) = % P(C) = % and P(D) = % (10.58)

What we have just seen is far from accidental: indeed, it represents a concrete
example of a general fact discovered by Shannon, namely, an entropy-related bound
on how good compression can be for a given source.

Theorem 10.3.1 (Shannon’s Noiseless Channel Coding Theorem). Let a source S
emit symbols from an alphabet with a given probability distribution. A message of
length n, with n sufficiently large, sent over a noiseless channel can be compressed on
average without loss of information to a minimum of H(S) x n bits.

We shall not provide a formal proof of Shannon’s theorem, only the underlying
heuristics behind it. Imagine for simplicity’s sake that the source transmits only bi-
nary sequences. If the length # of the message is large enough, most sequences will
have a distribution of 0’s and 1’s, which will approximately correspond to their re-
spective probability. These well-behaved sequences are called typical, and all to-
gether they form a subset of all messages, known as the typical set. For instance,
suppose that 1 appears with probability p = 1 and 0 with probability p = 3. A typi-
cal sequence of length, say, 90, would have exactly 30 bits set to 1.

How many typical sequences are there? It turns out that their number is roughly
given by 279" As you can see from Figure 10.3, this is a proper subset of the set of
all sequences of length n (the entire set has 2" elements), as long as H < 1.

An ideal compression strategy is then the following:

m Create a lookup table for all the typical sequences of length n. The key for the
table needs exactly H(S)n bits. This lookup table is shared by Alice and Bob.

297

298

Information Theory

All 2'2 sequences

Figure 10.3. p(0) = %, p(1) = %, n=12, H(S)=0.81128.

B When a message of length 7 is sent, Alice sends one bit to inform Bob that the
sequence is typical, and the bits to look up the result. If the sequence is not
typical, Alice sends the bit that says “not typical,” and the original sequence.

For n large enough, almost all sequences will be typical or near typical, so the
average number of bits transmitted will get very close to Shannon’s bound.

Exercise 10.3.2 Assume that the source emits 0 with probability 7¢ and 1 with

probability % Count how many typical sequences of length n are there. (Hint:
Start with some concrete example, setting n = 2, 3, Then generalize.)]

Programming Drill 10.3.1 Write a program that accepts a pdf for 0 and 1, a given
length n, and produces as output the list of all typical sequences of length n.

Note: Shannon’s theorem does not say that all sequences will be compressed, only
that what the average compression rate for an optimal compression scheme will be.
Indeed, a universal recipe for lossless compression of all binary sequences does not
exist, as you can easily show doing the following exercise.

Exercise 10.3.3 Prove that there is no bijective map f from the set of finite binary
strings to itself such that for each sequence s, length(f(s)) < length(s). (Hint: Start
from a generic sequence sg. Apply f to it. Now iterate. What happens to the series

of sequences {so, f(s0), f(f(s0)),...}?) [|

Shannon’s theorem establishes a bound for lossless compression algorithms, but
it does not provide us with one. In some cases, as we have seen in the previous ex-
amples, we can easily find the optimal protocol by hand. In most situations though,
we must resort to suboptimal protocols. The most famous and basic one is known
as Huffman’s algorithm.” You may have met it already in an Algorithms and Data
Structures class.

° Huffman’s algorithm is actually optimal, i.e., it reaches Shannon’s bound, but only for special pdfs.

10.3 Classical and Quantum Data Compression

1] 2N - 6»@> x@?-’"

Figure 10.4. Alice sending messages to Bob in a four-qubit alphabet.

Programming Drill 10.3.2 [mplement Huffman’s algorithm, and then experiment
with it by changing the pdf of the source. For which source types does it perform
poorly?

It is now time to discuss qubit compression. As we already mentioned in the be-
ginning of Section 10.3, Alice is now emitting sequences of qubits with certain fre-
quencies to send her messages. More specifically, assume that Alice draws from a
qubit alphabet {|q1), ..., |qx)} of k distinct but not necessarily orthogonal qubits,
with frequency py, ..., px. A typical message of length n could look like

9191953 - - - q2); (10.59)

in other words, any such message will be a point of the tensor product C*> ® C?> ®
... ® C? = C?. If you recall Alice’s story, she was sending bits to inform Bob about
her moods, as depicted in Figure 10.4. Alice is sending out streams of particles with
spin.

We would like to know if there are ways for Alice to compress her quantum
messages to shorter qubit strings.

We need to define first what a quantum compressor is, and see if and how the
connection between entropy and compression carries over to the quantum world. To
do so, we must upgrade our vocabulary: whereas in classical data compression we
talk about compression/decompression functions and typical subsets, here we shall
replace them with compression/decompression unitary maps and typical subspaces,
respectively.

Definition 10.3.2 A k — n quantum data compression scheme for an assigned quan-
tum source is specified by a change-of-basis unitary transformation

QCc:C* — (10.60)
and its inverse
ocl.c* — . (10.61)

The fidelity of the quantum compressor is defined as follows: consider a mes-
sage from the source of length n, say, |m). Let P.(QC(|m)) be the truncation of
the transformed message to a compressed version consisting of the first k qubits
(the length of P,(QC(|m)) is therefore k). Now, pad it with n — k zeros, getting
Pi(QC(|m))00...0). The fidelity is the probability

(QC (| P(QC(Im))00... 0))|m)?, (10.62)

299

300

Information Theory

Alice

Qc _ Truncate
|q19, .9y} 4145 g} i gi) —> |4i4s.4)

Bob

Pads Qc’ . Measures
4 ¢ 4i) > ldi gy ¢,00...0) o lavay. ay) [101100....1001)

Figure 10.5. A quantum compression scheme.

i.e., the likelihood that the original message will be perfectly retrieved after the receiver
pads the compressed message, applies the inverse maps and finally measures it.

In plain words, a quantum compressor is a unitary (and therefore invertible)
map such that most transformed messages have only k significant qubits, i.e.,
they lie almost completely within a k-dimensional subspace known as the typical
subspace.

If Alice owns such a quantum compressor, she and Bob have a well-defined strat-
egy to compress qubit streams (shown in Figure 10.5):

Step 1. She applies the compressor to her message. The result’s amplitudes can
be safely set to zero except for the ones corresponding to the typical subspace. After
a rearrangement, the amplitudes have been listed so that the first & belong to the
subspace and the other n — k are the ones that are negligible and can be thus set to
Zero.

Step 2. Alice truncates her message to the significant k qubits, and sends it to
Bob.

Step 3. Bob appends to the received message the missing zeros (padding step),
and

Step 4. Bob changes back the padded message to the original basis.

Step 5. He then measures the message and reads it.

How and where is Alice to find her quantum processor? As before, to build up
our intuition, we are going to analyze a concrete example. Let us go back to Example
10.2.2 and use the same setup. Alice’s quantum alphabet consists of the two vectors
|w1) and |w;), which she sends with frequency % and %, respectively. A message of
length n will look like

Y1Y2 ... ¥n), (10.63)

10.3 Classical and Quantum Data Compression

where
[¥i) = |w1) or [¢;) = |wy). (10.64)

Suppose that Alice, before sending the message, changes basis. Instead of the canon-
ical basis, she chooses the eigenvector basis of the density matrix, i.e., the vectors |e;)
and |e;) that we explicitly computed in Example 10.2.4.

Alice’s message can be described in this basis as

cileier...e1) + caleter...ex) + -+ cmlezer...e2). (1065)

What is the benefit of this change of basis? As a vector, the message is still a point
in C%', and so its length has not changed. However, something quite interesting is
happening here. We are going to find out that quite a few of the ¢;’s are indeed so
small that they can be discarded. Let us calculate first the projections of |w;) and
|w,) along the eigenvectors e; and e;:

[{e1|wr)| = 0.255, [{e1|wy)| = 0.229, [{ez|w1)| = 0.850, and [{e2|wr)| = 0.973.
(10.66)

We have just discovered that the projection of either |w;) or |w,) along |e;) is smaller
than their components along |e;).

Using the projections of Equation (10.71), we can now calculate the components
¢; in the eigenbasis decomposition of a generic message. For instance, the message
|wiwiwiwiwwwwiwiwywy) has the component along |ejejejejeiererererererer)
equal to

le1l = (Ierlwn)¥([{er [wa) | = 9.37 % 107 (10.67)

Exercise 10.3.4 Assume the same setup as the previous one, and consider the mes-
sage |vi)|vi)|vi)|vi)|v2)|vi)|vi)|vi)|vi)|v2). What is the value of the component along
le2)|e2)le2)]er)ler)]ez)lea)|e)ler)ler)? L

Many of the coefficients ¢; are dispensable, as we anticipated (see Figure 10.6.)

The significant coefficients turn out to be the ones that are associated with typ-
ical sequences of eigenvectors, i.e., sequences whose relative proportions of |e;)
and |e;) are consistent with their probabilities, calculated in Equations (10.54) and
(10.55). The set of all these typical sequences spans a subspace of C*', the typical sub-
space we were looking for. Its dimension is given by 2V*#(5) where H(S) is the von
Neumann entropy of the source. Alice and Bob now have a strategy for compress-
ing and decompressing qubit sequences, following the recipe sketched earlier in
Steps 1-5.

We have just shown a specific example. However, what Alice found out can be
generalized and formally proved, leading to the quantum analog of Shannon’s cod-
ing theorem, due to Benjamin Schumacher (1995b).

Theorem 10.3.2 (Schumacher’s Quantum Coding Theorem.) A qubit stream of
length n emitted from a given quantum source QS of known density can be com-
pressed on average to a qubit stream of length n x H(QS), where H(QS) is the von
Neumann entropy of the source. The fidelity approaches one as n goes to infinity.

301

302

Information Theory

Total space

Figure 10.6. Source as in Example 10.2.2: p(lw1)) =
H(S) = 0.54999.

. pllwa)) = 2, n =12,

Wik

Note: In a sense, the bound n x H(QS) represents the best we can do with quantum
sources. This theorem is particularly exciting in light of what we have seen at the
end of the last section, namely, that von Neumann entropy can be lower than clas-
sical entropy. This means that, at least in principle, quantum compression schemes
can be designed that compress quantum information in a tighter way than classical
information can be in the classical world.

However, this magic comes at a price: whereas in the classical arena one can cre-
ate purely lossless data compression schemes, this is not necessarily so in the quan-
tum domain. Indeed, if Alice chooses her quantum alphabet as a set of nonorthogo-
nal states, there is no measurement on Bob’s side whose eigenvectors are precisely
Alice’s “quantum letters.” This means that perfect reconstruction of the message
cannot be ensured. There is a trade-off here: the quantum world is definitely more
spacious than our own macroscopic world, thereby allowing for new compression
schemes, but at the same time it is also fuzzy, carrying an unavoidable element of
intrinsic indeterminacy that cannot be ignored.

Programming Drill 10.3.3 Write a program that lets the user enter two qubits and
their corresponding probabilities. Then calculate the density matrix, diagonalize it,
and store the corresponding eigenbasis. The user will then enter a quantum message.
The program will write the message in the eigenbasis and return the truncated part
belonging to the typical subspace.

10.4 ERROR-CORRECTING CODES

There is yet another aspect of information theory that cannot be ignored. Informa-
tion is always sent or stored through some physical medium. In either case, random
errors may happen: our valuable data can degrade over time.

Errors occur with classical data, but the problem is even more serious in the
quantum domain: as we shall see in Chapter 11, a new phenomenon known as

10.4 Error-Correcting Codes

decoherence makes this issue absolutely critical for the very existence of a reliable
quantum computer.

As a way to mitigate this unpleasant state of affairs, information theory re-
searchers have developed a large variety of techniques to detect errors, as well as
to correct them. In this last section we briefly showcase one of these techniques,
both in its classical version and in its quantum version.

As we have just said, our enemy here is random errors. By their very definition,
they are unpredictable. However, frequently we can anticipate which fypes of errors
our physical devices are subjected to. This is important: by means of this knowledge
we can often elaborate adequate defense strategies.

Suppose you send a single bit, and you expect a bit flip error 25% of the time.
What would you do? A valid trick is simply repetition. Let us thus introduce an
elementary repetition code:

0 000
(10.68)

1 111

We have simply repeated a bit three times. One can decode the triplet by majority
law: if at least two of the qubits are zeros, it is zero; else, it is one.

Exercise 10.4.1 What is the probability of incorrectly decoding one bit? [|

Now, let us move on to qubit messages. Qubits are less “rigid” than bits, so new
types of errors can occur: for instance, aside qubit-flips

«l0) + BI1) —> B|0) + «|1) (10.69)
signs can be flipped too:
«|0) + BI1) — «|0) — BI1). (10.70)

Exercise 10.4.2 Go back to Chapter 5 and review the Block sphere representation
of qubits. What is the geometric interpretation of sign flip? [|

To be sure, when dealing with qubits other types of errors can occur, not just
“jumpy” errors (i.e., discrete ones). For instance, either « or 8 could change by a
small amount. For example, « might have a change of phase by 15°. For the sake of
simplicity though, we shall only envision bit and sign flips.

If we are looking for the quantum analog of the repetition code given in Equa-
tion (10.68), we must make sure that we can detect both types of errors. There is a
code that does the job, due to Peter W. Shor (1995), known as the 9-qubit code'’:

[0) (]000) + |111)) ® (]000) + |111)) ® (]000) + [111))

(10.71)
1) (1000) — [111)) ® (000) — [111)) @ (|000) — |111))

10°9_qubit code is the first known quantum code.

303

304

Information Theory

Why nine qubits? 3 x 3 = 9: by employing the majority rule twice, once for qubit
flip and once for sign, we can correct both.

Exercise 10.4.3 Suppose that a sign flip occurs 25% of the times, and a single qubit
flip 10% of the times. Also suppose that these two errors are independent of each
other. What is the likelihood that we incorrectly decode the original qubit?]

We have barely scraped the tip of an iceberg. Quantum error-correction is a
flourishing area of quantum computing, and a number of interesting results have
already emerged. If, as we hope, this small section has whetted your appetite, you
can look into the references and continue your journey beyond the basics.
References: The first formulation of the basic laws of information theory is con-
tained in the seminal (and readable!) paper “The mathematical theory of communi-
cation” written by Claude Shannon (Shannon, 1948). This paper is freely available
online. A good reference for information theory and Shannon’s theorem is Ash
(1990).

Huffman’s algorithm can be found, e.g., on pages 385-393 of Corman et al.
(2001).

An excellent all-round reference on data compression is the text by Sayood
(2005). For Schumacher’s theorem, take a look at the PowerPoint presentation by
Nielsen.

Finally, Knill et al. (2002) is a panoramic survey of quantum error-correction.

11

Hardware

The machine does not isolate man from the great problems
of nature, but plunges him more deeply into them.

Antoine de Saint Exupery, Wind, Sand, and Stars

In this chapter, we discuss a few hardware issues and proposals. Most certainly you
have wondered (perhaps more than once!) whether all we have presented up to now
is nothing more than elegant speculation, with no practical impact for the real world.

To bring things down to earth, we must address a very basic question: do we
actually know how to build a quantum computer?

It turns out that the implementation of quantum computing machines repre-
sents a formidable challenge to the communities of engineers and applied physicists.
However, there is some hope in sight: quite recently, some simple quantum devices
consisting of a few qubits have been successfully built and tested. Considering the
amount of resources that have been poured into this endeavor from different quar-
ters (academia, private sector, and the military), it would not be entirely surprising
if noticeable progress were made in the near future.

In Section 11.1 we spell out the hurdles that stand in the way, chiefly related
to the quantum phenomenon known as decoherence. We also enumerate the wish
list of desirable features for a quantum device. Sections 11.2 and 11.3 are devoted
to describing two of the major proposals around: the ion trap and optical quantum
computers. The last section mentions two other proposals, and lists some milestones
that have been achieved so far. We conclude with some musings on the future of
quantum ware.

A small disclaimer is in order. Quantum hardware is an area of research that
requires, by its very nature, a deep background in quantum physics and quantum
engineering, way beyond the level we have asked of our reader. The presentation
will have perforce a rather elementary character. Refer to the bibliography for more
advanced references.

Note to the Reader: We would have loved to assign exercises such as “build
a quantum microcontroller for your robot,” or “assemble a network of quantum

305

306 Hardware

s, ¢

= C

Figure 11.1. A PC that is uncoupled from the environment.

chips,” or something along these lines. Alas, we cannot. Nor, without violating the
aforementioned disclaimer, could we ask you to carry out sophisticated calculations
concerning modulations of electromagnetic fields, or similar matters. Thus, there are
only few exercises scattered in this chapter (do not skip them though: your effort will
be rewarded).

11.1 QUANTUM HARDWARE: GOALS AND CHALLENGES

In Chapter 6 we described the generic architecture of a quantum computing device:
we need a number of addressable qubits, the capability of initializing them properly,
applying a sequence of unitary transformation to them, and finally measuring them.

Initialization of a quantum computer is similar to initialization of a classical one:
at the beginning of our computation, we set the machine in a well-defined state.
It is absolutely crucial that the machine stay in the state we have put it in, till we
modify it in a controlled way by means of known computational steps. For a classical
computer, this is in principle quite easy to do': a classical computer can be thought of
as an isolated system. Influences from the environment can theoretically be reduced
to zero. You might keep Figure 11.1 in mind.

The case of a quantum computer is rather different. As we have already seen,
one of the core features of quantum mechanics is entanglement: if a system S is com-
posed of two subsystems 5] and S, their states may become entangled. In practice,
this means that we cannot ignore what happens to S; if we are interested in the way
S1 evolves (and vice versa). Moreover, this odd phenomenon happens regardless of
how physically separated the two subsystems actually are. How is this relevant to
the task of building a quantum computer? The machine and its environment be-
come entangled, preventing the evolution of the state of the quantum register from
depending exclusively on which gates are applied to it. To fix our ideas, let us sup-
pose that the quantum register in our device is a sequence of 1,000 electrons, qubits
being encoded as their spin state. In this scenario, initialization means setting all the
electrons to some defined spin state, as in Figure 11.2. For instance, they could be
all in spin up, or all in spin down. The key point is that we need to control the global
state of the register. In physics jargon, a well-defined state is known as pure state, as
in Figure 11.2.

1 In reality, of course, classical machines are also prone to errors.

11.1 Quantum Hardware: Goals and Challenges

Figure 11.2. An uncoupled register initialized to spin up.

When we take our register out of isolation, these electrons tend to couple with
the billions of other electrons in the environment, shifting to some superposition of
spin up and spin down, as in Figure 11.3.

The problem here lies in that we have absolutely no idea about the precise initial

state of the environment’s electrons, nor do we know the details of their interaction
with the electrons in the quantum register. After a while, the global state of the
register is no longer pure; rather, it has become a probabilistic mix of pure states,
or what is known in quantum jargon as a mixed state.” Pure states and mixed states
have a different status in quantum mechanics. There is always a specific measurement
that invariably returns true on a pure state . Instead, there is no such thing for mixed
states, as shown by the following exercise.
Exercise 11.1.1 Consider the pure state |{) = %, and the mixed state obtained
by tossing a coin and setting it equal to |0) if the result is heads, or |1) if the result
is tails.” Devise an experiment that discriminates between these two states. Hint:
What would happen if we measured the qubit in the following basis?

10) +11) 10) — 1) }
, 11.1
"5 s (o
|
Where precisely lies the difference between pure and mixed states?
Consider the following family of spin states:
|0) + exp(if)|1)
() = QTP (112)

V2

For every choice of the angle 0, there is a distinct pure state. Each of these states is
characterized by a specific relative phase, i.e., by the difference between the angles
of the components of |0) and |1) in the polar representation.* How can we physically
detect their difference? A measurement in the standard basis would not do (the
probabilities with respect to this basis haven’t been affected). However, a change

2 The density matrix, which we introduced in Section 10.2 in order to talk about entropy, is also the
fundamental tool for studying mixed states. Indeed, a single pure quantum state |/) is associated with
the special form of the density operator |)(y|, whereas an arbitrary mixed state can be represented
by a generic density operator.

For the readers of Section 10.2: the mixed state is represented by the density matrix Mz\lﬂll

Tt is only this relative phase that has some physical impact, as we are going to see in a minute. Indeed,

multiplying both components by exp(i6) would simply rotate them by the same angle and generate an
entirely equivalent physical state, as we pointed out in Section 4.1.

307

308 Hardware

@A -
/7

A) S & - 1) &

Figure 11.3. The qubits decohered as a result of coupling with the environment.

of basis will do. Observe |,) along the x axis, and compute the average spin value
along this direction®: (]S, |14). As you can verify for yourself in the next exercise,
the average depends on 6!

Exercise 11.1.2 Calculate (|S;|¥s). For which value of 6 is the average maxi-
mum? |

If you now consider the mixed state of the last exercise, namely the one you get
by tossing a coin and deciding for either |0) or |1), the relative phase and its con-
comitant information is lost. It is precisely the lack of relative phase that separates
pure states and mixed ones. One way states change from pure to mixed is through
uncontrollable interaction with the environment.

Definition 11.1.1 The loss of purity of the state of a quantum system as the result of
entanglement with the environment is known as decoherence.

We are not going to provide a full account of decoherence’. However, it is well
worth sketching how it works, as it is our formidable challenger in the path to real-
life quantum computation (the Art of War states: “know thy enemy!”).

In all our descriptions of quantum systems, we have implicitly assumed that they
are isolated from their environment. To be sure, they can interact with the exter-
nal world. For instance, an electron can be affected by an electromagnetic field,
but the interaction is, as it were, under control. The evolution of the system is de-
scribed by its hamiltonian (see Section 4.3), which may include components account-
ing for external influences. Therefore, as long as we know the hamiltonian and the

5 The formula for the average as well as the hermitian S, were described in Section 4.2.

% Decoherence has been known since the early days of quantum mechanics. However, in recent times it
has received a great deal of attention, not only in relation to quantum computing, but as a formidable
tool for understanding how our familiar classical world emerges out of the uncanny quantum world.
How come we do not normally see interference when dealing with macroscopic objects? An answer is
provided by decoherence: large objects tend to decohere very fast, thereby losing their quantum fea-
tures. An intriguing survey of decoherence as a way of accounting for classical behavior of macroscopic
objects is Zurek (2003).

11.1 Quantum Hardware: Goals and Challenges

initial state, it is totally predictable. Under such circumstances, the system will al-
ways evolve from pure states to other pure states. The only unpredictable factor is
measurement. Summing up: we always implictly assumed that we knew exactly how
the environment affects the quantum system.

Let us now turn to a more realistic scenario: our system, say, a single electron
spin, is immersed in a vast environment. Can we model this extended system? Yes,
we can, by thinking of the environment as a huge quantum system, assembled out
of its components.

To understand what happens, let us start small. Instead of looking at the entire
environment, we shall restrict ourselves to interactions with a single external elec-
tron. Let us go back to our electron of a moment ago, and let us assume that it has
become entangled with another electron to form the global state

s 100) + exp(i6)|11)
global] — ﬁ .

Now, let us only measure the spin of our electron in the x direction, just as we have
done before. This step corresponds to the observable S, ® I, i.e., the tensor of S,
with the identity on the second electron: we must therefore compute

(11.3)

<ngobal|(Sx & I)|wglobal>- (11'4)
Let us do it. In matrix notation (written in the standard basis),

1

Hﬁ lobal) = —F= 1107 01 €X 19 T 11.5

g ﬁ[p(i0)] (11.5)
and (we are ignoring here the constant factor ’%)

0 1 10

S, 1= ® ; (11.6)
10 0 1

thus we are simply evaluating

0010

[100 ("9)1]0001[100 ('9)1}T0

—,0,0, exp(—if)— —,0,0,exp(if)— | =0.

V2 V2ll1 0 0 o|Lv2 V2
0100

(11.7)

The net result of our calculation is that the phase is apparently gone: there is no a
trace of 0 in the average value! We say this — apparently — for a reason: the phase
is simply hiding behind the curtain afforded by entanglement. To “smoke the phase
out,” we have to perform a measurement on both electrons. How? We simply com-
pute the average of Sy ® S on |¥/gopa). The value now does indeed depend on 6, as
you can check in the following exercise:

Exercise 11.1.3 Compute (Vgopar| Sy ® Sxl|Veiobat)- [|

309

310

Hardware

It is time to wrap up what we have learned. We were able to recover the pre-
cious phase information only after measuring the second electron. Now, imagine our
electron interacting with a great many peers from the environment, in an unknown
manner. If we could track them all down, and measure their respective states, just
like we have done above, there would be no issue. Alas, we cannot: our phase is irre-
trievably lost, turning our pure state into a mixed one. Note that decoherence does
not cause any real collapse of the state vector. The information is still out there,
marooned, as it were, in the vast quantum ocean.

Decoherence presents us with a two-pronged challenge:

m On the one hand, adopting basic quantum systems that are very prone to “hook
up” with the environment (electrons are a very good example, as they tend to
interact with other peers in their vicinity) makes it quite difficult to manage the
state of our machine.

B On the other hand, we do need to interact with the quantum device after all,
to initialize it, apply gates, and so on. We are part of the environment. A quan-
tum system that tends to stay aloof (photons are the primary example) makes it
difficult to access its state.

How serious is the challenge afforded by decoherence? How quick are its ef-
fects? The answer varies, depending on the implementation one chooses (for in-
stance, for single-ion qubits, as described in the next section, it is a matter of sec-
onds). But it is serious enough to raise major concerns. You can read a leisurely
account in the sprightly Scientific American article “Quantum Bug” by Graham P.
Collins.

How can we even hope to build a reliable quantum computing device if decoher-
ence is such a big part of quantum life? It sounds like a Catch-22, doesn’t it? There
are, however, two main answers:

B A possible way out is fast gates execution: one tries to make decoherence suffi-
ciently slow in comparison to our control, so that one has time to safely apply
quantum gates first. By striving to beat Nature in the speed race, at least on very
short runs, we can still hope to get meaningful results.

B The other strategy is fault-tolerance. How can one practically achieve fault-
tolerance? In Section 10.4, we have briefly sketched the topic of quantum error-
correcting codes. The rationale is that using a certain redundancy, we can thwart
at least some types of errors. Also, another possible strategy under the redun-
dancy umbrella is repeating a calculation enough times, so that random errors
cancel each other out.’

We conclude this section with an important wish list for candidate quantum com-
puters that has been formulated by David P. DiVincenzo of IBM.

DiVincenzo’s Wish List
B The quantum machine must have a sufficiently large number of individually ad-

dressable qubits.

7 Caveat: one cannot repeat too many times, else the benefits of quantum parallelism will get totally
eroded!

11.2 Implementing a Quantum Computer I: lon Traps

m It must be possible to initialize all the qubits to the zero state, i.e., |00 - - - 000).

B The error rate in doing computations should be reasonably low, i.e., decoherence
time must be substantially longer than gate operation time.

m We should be able to perform elementary logical operations between pairs of
qubits.

m Finally, we should be able to reliably read out the results of measurements.

These five points spell out the challenge that every prospective implementation
of a quantum computing device must meet. We are now going to see a few of the
proposals that have emerged in the last ten odd years.

11.2 IMPLEMENTING A QUANTUM COMPUTER I: ION TRAPS

Before we start discussing concrete implementations, let us remind ourselves that a
qubit is a state vector in a two-dimensional Hilbert space. Therefore, any physical
quantum system whose state space has dimension 2V can, at least in principle, be
used to store an addressable sequence of N qubits (a g-register, in the notation of
Chapter 7).

What are the options?

Generally, the standard strategy is to look for quantum systems with a two-
dimensional state space. One can then implement g-registers by assembling a num-
ber of copies of such systems. The canonical two-dimensional quantum systems are
particles with spin. Electrons, as well as single atoms, have spin. There is thus plenty
of room in nature for encoding qubits. Spin is not the only one: another natural
choice is excited states of atoms, as we are going to see in a moment.

Let us first sumnmarize all the steps we need:

B Initialize all particles to some well-defined state.

m Perform controlled qubit rotations on a single particle (this step will implement
a single-qubit gate).

m Be able to mix the states of two particles (this step aims at implementing a uni-
versal two-qubit gate).

B Measure the state of each individual particle.

m Keep the system of particles making up our g-register as insulated as possible
from the environment, at least for the short period of time when quantum gates
are applied.

The first proposal for quantum hardware is known as the ion trap. It is the oldest
one, going back to the mid-nineties, and it is still the most popular candidate for
quantum hardware.®

The core idea is simple: as you may recall from your chemistry classes, an ion
is an electrically charged atom. Ions can be of two types: they are either positive
ion, or cations, having lost one or more electrons. Or they are negative ions, or
anions, having acquired some electrons. Ionized atoms can be acted upon by means

8 The first quantum gate, the controlled-NOT, was experimentally realized with trapped ions by C.
Monroe and D. Wineland in 1995. They followed a proposal by Cirac and Zoller put forward a year
earlier.

311

312 Hardware

Figure 11.4. An ion in a trap.

of an electromagnetic field, as they are electrically charged; more precisely, we can
confine our ionized atom in a specific volume, known as ion trap (Figure 11.4).

In practice, experiments have been conducted with positive ions of calcium: Ca™.
First, the metal is brought to its gaseous state. Next, the single atoms are stripped of
some of their electrons, and third, by means of a suitable electromagnetic field, the
resulting ions are confined to the trap.

How are qubits encoded? An atom can be in a excited state or in a ground state
(Figure 11.5).

These two states represent two energy levels of the atom and they form an or-
thogonal basis for a two-dimensional Hilbert space. As we have seen in Chapter 4
(photoelectric effect), if we pump energy into an atom that is in ground state by
making it absorb a photon, it will raise to its excited state. Conversely, the atom can
lose its energy by emitting a photon. This process is known as optical pumping and
it is performed using a laser, i.e., a coherent beam of light. The reason for using a
laser is that it has an extremely high resolution, allowing the operator to “hit” single
ions and thereby achieving a good control of the quantum register. Through opti-
cal pumping we can initialize our register to some initial state with a high degree of
fidelity (almost 100%).

Next, we need to manipulate the register. As we mentioned in Section 7.2, there
is a considerable degree of freedom in quantum computing when it comes to which
particular set of gates is implemented, as long as the set is complete. The particular
choice depends on the hardware architecture: one chooses gates that are easy to
implement and provide a good degree of fidelity. In the ion trap model, the usual
choice is as follows:

m Single-qubit rotation: By “hitting” the single ion with a laser pulse of a given
amplitude, frequency, and duration, one can rotate its state appropriately.

m Two-qubit gates: The ions in the trap are, in a sense, strung together by what
is known as their common vibrational modes. Again, using a laser one can af-
fect their common mode, achieving the desired entanglement (see the paper

Figure 11.5. Ground and excited states.

11.3 Implementing a Quantum Computer Il: Linear Optics

by Holzscheiter for details). The original choice for a two-qubit gate was the
controlled-NOT gate, which was proposed in 1995 by Cirac and Zoller (1995).
Recently, several other more reliable schemes have been implemented.

The last step is measurement. Essentially, the same mechanism we use for setting
the qubits can be employed for readouts. How? Aside from the two main long-lived
states |0) and |1) (ground and excited), the ion can enter a short-lived state, let us
call it |s) (“s” is for short), when gently hit by a pulse. Think of |s) as sitting in the
middle between the other two. If the ion is in the ground state and gets pushed to
|s) it will revert to ground and emit a photon. On the other hand, if it is in an the
excited state, it will not. By repeating the transition many times, we can detect the
photons emitted (if any) and thus establish where the qubit is.

To conclude this section, let us list the main strengths and weaknesses of the ion
trap model:

® On the plus side, this mode has long coherence time, in the order of 1-10 sec-
onds. Secondly, the measurements are quite reliable, very close to 100%. Finally,
one can transport qubits around in the computer, which is a nice feature to have
(remember, no copying allowed, so moving things around is good).

B On the minus side, the ion trap is slow, in terms of gate time (slow here means
that it takes tens of milliseconds). Secondly, it is not apparent how to scale the
optical part to thousands of qubits.

11.3 IMPLEMENTING A QUANTUM COMPUTER II: LINEAR OPTICS

The second implementation of a quantum machine we are going to consider is linear
optics. Here, one builds a quantum machine out of sheer light!

To build a quantum computer, the very first step is to clearly state how we are
going to implement qubits. Now, as we said in Section 5.1, every quantum system
that has dimension 2 is, in principle, a valid candidate. Quanta of light, alias photons,
are good enough, thanks to the physical phenomenon known as polarization (see
Section 4.3). We have all seen polarization at work: a beam of light passes through a
polarization filter, and the result is a coherent beam of light, i.e., an electromagnetic
wave that vibrates along a specific plane.

As photon can be polarized, one can stipulate how qubits are implemented: a
certain polarization axis, say vertical polarization, will model |0), whereas |1) will be
represented by horizontal polarization.

So much for qubits. Initialization here is straightforward: a suitable polarization
filter will do. Gates are less trivial, particularly entanglement gates, as photons have
a tendency to stay aloof. It therefore pays to be on the economical side, i.e., to
implement some small universal set of quantum gates. We have met the controlled-
NOT gate in Chapter 5. If one were to follow the simple-minded route, controlled-
NOT would require a two-photon interaction. This happens very seldom, and makes
this venue quite impractical. But, as it often happens, there is a way around.

To create controlled-NOT, we need control and target inputs and we need more
optical tools. Specifically, we need mirrors, polarizing beam splitters, additional
ancillary photons, and single-photon detectors. This approach is known as linear
optics quantum computing, or LOQC, as it uses only linear optics principles and

313

314 Hardware

Control Control
pa s oae o o= E— - TS TS T
L
]

Input Ancilla pair () Output
Target ' Target
S GED TE TE T - T T T, -
|
]

Figure 11.6. Basic idea of LOQC-based controlled-NOT gate.

methodologies. In LOQC, the nonlinearity of measurements arises from the detec-
tion of additional, ancillary photons. Figure 11.6 is a schematic picture of a LOQC
controlled-NOT gate (details can be found in Pittman, Jacobs, and Franson (2004).
Measurement of the final output presents no difficulties. A combination of po-
larization filters and single-photon detectors will do.
Before we quit this section let us point out strengths and weaknesses of the op-
tical scheme:

B On the plus side, light travels. This means that quantum gates and quantum
memory devices can be easily connected via optical fibers. In other approaches,
like the ion trap, this step can be a quite complex process. This plus is indeed a
big one, as it creates a great milieu for distributed quantum computing.

m On the minus side, unlike electrons and other matter particles, it is not easy for
photons to become entangled. This is actually a plus, as it prevents entanglement
with its environment (decoherence), but it also makes gate creation a bit more
challenging.

11.4 Implementing a Quantum Computer Ill: NMR and Superconductors

11.4 IMPLEMENTING A QUANTUM COMPUTER IIl: NMR AND
SUPERCONDUCTORS

Aside the two models described in the last sections, there are currently several other
proposals under investigation, and more may emerge soon. We mention in passing
two others that have received a lot of attention in the last years.

Nuclear Magnetic Resonance (NMR). The idea here is to encode qubits not as
single particles or atoms, but as global spin states of many molecules in some fluid.
These molecules float in a cup, which is placed in an NMR machine, quite akin to
the devices used in hospitals for magnetic resonance imaging. This large ensemble of
molecules has plenty of built-in redundancy, which allows it to maintain coherence
for a relatively long time span (several seconds).

The first two-qubit NMR computers were demonstrated in 1998 by J.A. Jones
and M. Mosca at Oxford University and at the same time by Isaac L. Chuang at
IBM’s Almaden Research Center, together with coworkers at Stanford University
and MIT. Berggren quoted in the references.

Superconductor Quantum Computers (SQP). Whereas NMR uses fluids, SQP
employs superconductors.” How? By means of Josephson junctions — thin layers of
nonconducting material sandwiched between two pieces of superconducting metal.
At very low temperatures, electrons within a superconductor become, as they were,
friends, and pair up to form a “superfluid” flowing with no resistance and traveling
through the medium as a single, uniform wave pattern. This wave leaks into the
insulating middle. The current flows back and forth through the junction much like
a ping-pong ball, in a rhythmic fashion.

How are qubits implemented? Through what is now known as the Josephson
junction qubit. In this implementation, the |0) and |1) states are represented by the
two lowest-frequency oscillations of the currents flowing back and forth through
the junction. The frequency of these oscillations is very high, being of the order of
billions of times per second.

Where are we now?

In 2001 the first execution of Shor’s algorithm was carried out at IBM’s Almaden
Research Center and Stanford University. They factored the number 15: not an
impressive number by any means, but a definite start! (By the way, the answer was
15=5%3.)

In 2005, using NMR, a 12-qubit quantum register was benchmarked. So far at
least, scalability seems to be a major hurdle. Progress has been made almost a qubit
at a time, in the last few years. On the positive side, new proposals and methodolo-
gies crop up in a continuous stream.

If you wish to know more about recent news in quantum hardware research,
probably the best course is to take a look at the NIST Road Map. NIST, the US
National Institute of Science and Technology, a major force in the ongoing effort
to implement quantum computing machines, has recently released a comprehensive
road map listing all major directions toward quantum hardware, as well as compar-
ison tables pointing at weaknesses and strengths of each individual approach. You
can download it at NIST Web site: http: //qist.lanl.gov/qcomp_map.shtml.

° A superconductor is matter at very low temperature, exhibiting so-called superconductivity properties.

315

316

Hardware

As you can imagine from this brief survey, people are pretty busy at the moment,
trying to make the magic quantum work.

It is worth mentioning that as of the time of this writing (late 2007), there are
already three companies whose main business is developing quantum computing
technologies: D-Wave Systems, MagicQ, and Id Quantique. Recently (February
13, 2007), D-Wave has publicly demonstrated a prototypical quantum computer,
known as Orion, at the Historical Museum in Mountain View, CA. Orion was ap-
parently able to play the popular Sudoku game. D-Wave’s announcement has gen-
erated some expected and healthy skepticism among academic researchers.

11.5 FUTURE OF QUANTUM WARE

At last, the future. The great physicist Niels Bohr, a major protagonist in the devel-
opment of quantum mechanics, had a great punch line: “Prediction is always hard,
especially of the future.”'’

We could not agree more. What we think is safe to say is that there is a reason-
able likelihood that quantum computing may become a reality in the future, perhaps
even in the relatively near future. If that happens, it is also quite likely that many
areas of information technology will be affected. Certainly, the first thought goes to
communication and cryptography. These areas are noticeably ahead, in that some
concrete quantum encryption systems have been implemented and tested.

Assuming that sizeable quantum devices will be available at some point in time,
there is yet another important area of computer science where one can reasonably
expect some impact of quantum computation, namely, artificial intelligence. It has
been suggested in some quarters that the phenomenon of consciousness has some
links with the quantum (see, for instance, the tantalizing paper by Paola Zizzi or
either of these two books by Sir Roger Penrose, 1994, 1999). Some people even go
as far as saying that our brain may be better modeled as an immense quantum com-
puting network than are traditional neural networks (although this opinion is not
shared by most contemporary neuroscientists and cognitive scientists). Be that as
it may, a new area of research has already been spawned that merges traditional
artificial intelligence with quantum computing. The interaction happens both ways:
for instance, artificial intelligence methodologies such as genetic algorithms have
been proposed as a way to design quantum algorithms. Essentially, genes encode
candidate circuits and selection and mutation do the rest. This is an important di-
rection, as for now our understanding of quantum algorithm design is still rather
limited. On the other hand, quantum computing suggests new tools for artificial
intelligence. A typical example is quantum neural networks. Here, the idea is to
replace activation maps with complex valued ones, akin to what we have seen in
Section 3.3.

Beyond these relatively tame predictions, there is the vast expanse of science
fiction out there. Interestingly, quantum computing has already percolated into sci-
ence fiction (the nextQuant blog maintains a current list of science fiction works with
quantum computing themes). For instance, the well-known science fiction writer
Greg Egan has written a new book called Schild’s Ladder (Egan,2002), in which he

10 The same line is sometimes attributed to Yogi Berra.

11.5 Future of Quantum Ware

speculates about the role of quantum computing devices in the far future to enhance
mind capabilities. True? False?

All too often, the dreams of today are the reality of tomorrow.
References: Literature in the topics covered by this chapter abounds, although it
is a bit difficult for nonexperts to keep track of it. Here are just a few useful pointers:

For decoherence, Wojciech H. Zurek has an excellent readable paper: Zurek
(2003).

David P. DiVincenzo’s rules can be found in DiVincenzo.

The ion trap model is discussed in a number of places. A good general reference
is the paper by M. Holzscheiter.

Optical computers are clearly and elegantly presented in a paper by Pittman,
Jacobs, and Franson (2004).

For NMR computing, see Vandersypen et al. (2001).

An article by Karl Berggren (2004) provides a good introduction to supercon-
ductor quantum computing.

317

Appendix A
Historical Bibliography of Quantum
Computing

Jill Cirasella

This bibliographic essay reviews seminal papers in quantum computing. Although
quantum computing is a young science, its researchers have already published thou-
sands of noteworthy articles, far too many to list here. Therefore, this appendix
is not a comprehensive chronicle of the emergence and evolution of the field but
rather a guided tour of some of the papers that spurred, formalized, and furthered
its study.

Quantum computing draws on advanced ideas from computer science, physics,
and mathematics, and most major papers were written by researchers conversant
in all three fields. Nevertheless, all the articles described in this appendix can be
appreciated by computer scientists.

A.1 READING SCIENTIFIC ARTICLES

Do not be deterred if an article seems impenetrable. Keep in mind that profes-
sors and professionals also struggle to understand these articles, and take com-
fort in this epigram usually attributed to the great physicist Richard Feynman:
“If you think you understand quantum mechanics, you don’t understand quantum
mechanics.”

Some articles are difficult to understand not only because quantum theory is
devilishly elusive but also because scientific writing can be opaque. Fortunately,
there are techniques for tackling scientific articles, beginning with these preliminary
steps:

m Read the title. It may contain clues about the article’s purpose or findings.

m Read the abstract. It summarizes the article and will help you recognize impor-
tant points when you read them.

B Read the introduction and conclusion. Usually in plain language, the introduc-
tion and conclusion will help you decode the rest of the article.

m Skim the article. Skim to get a sense of the article’s structure, which will help
you stay oriented while you read.

319

320 Appendix A Historical Bibliography of Quantum Computing

Once you understand an article’s purpose and structure, you are ready to read
the full article. To maximize comprehension and minimize frustration, follow these
tips:

m Read actively. Take notes while you read. Underline key phrases; mark impor-
tant passages; record important points; sketch arguments and proofs; and repro-
duce calculations. (Of course, don’t write on anything owned by a library; make
copies instead.)

E Don’t dwell. Skim or skip difficult parts and return to them later. They might
make more sense after you have read subsequent sections.

E Consult the bibliography. If something confuses you, one of the cited articles
might explain it better or provide helpful background information.

m Read the article multiple times. You’ll understand more with each pass.

m Know when to stop. Don’t obsess over an article. At some point, you will have
gotten as much as you are going to get (for the time being). Some or even most of
the article might still elude you; nevertheless, you will know more after reading
the article than you did before you started, and you will then be better equipped
to read other articles.

m Talk about the article. Mull over the article with other students, and ask your
professor if you need help. After you have finished the article, keep talking about
it. Explain it to your class, to your study group, or even to someone unfamiliar
with the field. After all, the best way to learn something is to teach it to someone
else!

A.2 MODELS OF COMPUTATION

Richard Feynman was the first to suggest, in a talk in 1981, that quantum-mechanical
systems might be more powerful than classical computers. In this lecture, repro-
duced in the International Journal of Theoretical Physics in 1982 (Feynman, 1982),
Feynman asked what kind of computer could simulate physics and then argued that
only a quantum computer could simulate quantum physics efficiently. He focused on
quantum physics rather than classical physics because, as he colorfully put it, “nature
isn’t classical, dammit, and if you want to make a simulation of nature, you’d bet-
ter make it quantum mechanical, and by golly it’s a wonderful problem, because it
doesn’t look so easy” (p. 486).

Around the same time, in “Quantum mechanical models of Turing machines that
dissipate no energy” (Benioff, 1982) and related articles, Paul Benioff demonstrated
that quantum-mechanical systems could model Turing machines. In other words, he
proved that quantum computation is at least as powerful as classical computation.
But is quantum computation more powerful than classical computation?

David Deutsch explored this question and more in his 1985 paper “Quan-
tum theory, the Church-Turing principle and the universal quantum computer”
(Deutsch, 1985). First, he introduced quantum counterparts to both the Turing ma-
chine and the universal Turing machine. He then demonstrated that the universal
quantum computer can do things that the universal Turing machine cannot, includ-
ing generate genuinely random numbers, perform some parallel calculations in a
single register, and perfectly simulate physical systems with finite-dimensional state
spaces.

Appendix A Historical Bibliography of Quantum Computing

In 1989, in “Quantum computational networks” (Deutsch, 1989), Deutsch de-
scribed a second model for quantum computation: quantum circuits. He demon-
strated that quantum gates can be combined to achieve quantum computation in
the same way that Boolean gates can be combined to achieve classical computa-
tion. He then showed that quantum circuits can compute anything that the universal
quantum computer can compute, and vice versa.

Andrew Chi-Chih Yao picked up where Deutsch left off and addressed the com-
plexity of quantum computation in his 1993 paper “Quantum circuit complexity”
(Yao, 1993). Specifically, he showed that any function that can be computed in poly-
nomial time by a quantum Turing machine can also be computed by a quantum
circuit of polynomial size. This finding allowed researchers to focus on quantum
circuits, which are easier than quantum Turing machines to design and analyze.

Also in 1993, Ethan Bernstein and Umesh Vazirani presented “Quantum com-
plexity theory” (Bernstein and Vazirani, 1993), in which they described a universal
quantum Turing machine that can efficiently simulate any quantum Turing machine.
(As with so many quantum articles, the final version of the paper did not appear un-
til several years later, in the SIAM Journal of Computing; Bernstein and Vazirani,
1997). As its title suggests, Bernstein and Vazirani’s paper kick-started the study of
quantum complexity theory.

A.3 QUANTUM GATES

In 1995, a cluster of articles examined which sets of quantum gates are adequate for
quantum computation — that is, which sets of gates are sufficient for creating any
given quantum circuit. Of these papers, the one that was cited the most in later
works was “Elementary gates for quantum computation” (Barenco et al., 1995), in
which Adriano Barenco et al. showed that any quantum circuit can be constructed
using nothing more than quantum gates on one qubit and controlled exclusive-
OR gates on two qubits. Though that paper was arguably the most influential,
other articles were important as well, including “Two-bit gates are universal for
quantum computation” (DiVincenzo, 1995), in which David DiVincenzo proved
that two-qubit quantum gates are adequate; “Conditional quantum dynamics and
logic gates” (Barenco, Deutsch, Ekert, and Jozsa, 1995), in which Adriano Barenco,
David Deutsch, Artur Ekert, and Richard Jozsa showed that quantum controlled-
NOT gates and one-qubit gates are together adequate; and “Almost any quantum
logic gate is universal” (Lloyd, 1995), in which Seth Lloyd showed that almost any
quantum gate with two or more inputs is universal (i.e., by itself adequate).

A.4 QUANTUM ALGORITHMS AND IMPLEMENTATIONS

In 1992, David Deutsch and Richard Jozsa coauthored “Rapid solution of problems
by quantum computation” (Deutsch and Jozsa, 1992), in which they presented an al-
gorithm that determines whether a function f is constant over all inputs (i.e., either
equal to 1 for all x or equal to O for all x) or balanced (i.e., equal to 1 for half of
the values of x and equal to 0 for the other half). The Deutsch-Jozsa algorithm was
the first quantum algorithm to run faster, in all cases, than its classical counterparts.
So, even though the problem is somewhat contrived, the algorithm is notable and
the article is worth reading. Also worth reading is “Experimental realization of a

321

322

Appendix A Historical Bibliography of Quantum Computing

quantum algorithm” (Chuang et al., 1998), in which Isaac L. Chuang et al. detailed
how they used bulk nuclear magnetic resonance techniques to implement a simpli-
fied version of the Deutsch—Jozsa algorithm.

In “Quantum complexity theory” (Bernstein and Vazirani, 1993) (also men-
tioned before), Bernstein and Vazirani were the first to identify a problem that can
be solved in polynomial time by a quantum algorithm but requires superpolyno-
mial time classically. The following year, Daniel R. Simon introduced a problem
that a quantum algorithm can solve exponentially faster than any known classical
algorithm. His research inspired Peter W. Shor, who then invented two quantum al-
gorithms that outshone all others: polynomial-time algorithms for finding prime fac-
tors and discrete logarithms, problems widely believed to require exponential time
on classical computers. Simon and Shor both presented their discoveries at the 1994
IEEE Symposium on the Foundations of Computer Science (in “On the power of
quantum computation” (Simon, 1994) and “Algorithms for quantum computation:
Discrete logarithms and factoring” (Shor, 1994), respectively) and published the fi-
nal versions of their papers in a special quantum-themed issue of SIAM Journal of
Computing (Simon, 1997, and Shor, 1997, respectively).

Shor’s factorization algorithm in particular heightened excitement and even gen-
erated anxiety about the power and promise of quantum computing. Specifically,
the algorithm caused a furor because it threatened the security of information en-
crypted according to the widely used cryptosystem developed by Ronald L. Rivest,
Adi Shamir, and Leonard M. Adleman. RSA cryptography, as it is known, relies on
the presumed difficulty of factoring large numbers, a problem that is not known to
require exponential time but for which no classical polynomial-time algorithm ex-
ists. Rivest, Shamir, and Adleman described the cryptosystem in 1978 in “A method
for obtaining digital signatures and public-key cryptosystems” (Rivest, Shamir, and
Adleman, 1978), an article that is brief, elegant, and still very relevant to anyone
interested in Shor’s algorithm, cryptography, or complexity theory.

Of course, to pose a practical threat to RSA cryptography, Shor’s algorithm
must be implemented on quantum computers that can hold and manipulate large
numbers, and these do not exist yet. That said, Isaac L. Chuang and his research
team made headlines when they factored the number 15 on a quantum computer
with seven qubits. Their 2001 précis of their accomplishment, “Experimental real-
ization of Shor’s quantum factoring algorithm using nuclear magnetic resonance”
(Vandersypen et al., 2001), is a well-illustrated reminder of just how astonishing
Shor’s algorithm is.

Another highly influential quantum algorithm is Lov K. Grover’s algorithm for
searching an unordered list, described in both “A fast quantum mechanical al-
gorithm for database search” (Grover, 1996) and “Quantum mechanics helps in
searching for a needle in a haystack” (Grover, 1997). Unlike Shor’s algorithm,
Grover’s algorithm solves a problem for which there are polynomial-time classical
algorithms; however, Grover’s algorithm does it quadratically faster than classical
algorithms can. With Grover’s algorithm, as with the algorithms mentioned ear-
lier, Isaac L. Chuang was at the experimental fore; in 1998, he, Neil Gershenfeld,
and Mark Kubinec reported on the first implementation of Grover’s algorithm in
“Experimental implementation of fast quantum searching” (Chuang, Gershenfeld,
and Kubinec, 1998).

Appendix A Historical Bibliography of Quantum Computing

There are of course more quantum algorithms than those discussed earlier. How-
ever, there are far fewer than researchers had hoped there would be by now, and
research in quantum algorithms has not kept pace with research in other aspects
of quantum computing and quantum information. In 2003, Peter W. Shor addressed
this stagnation in a short article called “Why haven’t more quantum algorithms been
found?” (Shor, 2003). Although unsure of the answer to that question, Shor offered
several possible explanations, including the possibility that computer scientists have
not yet developed intuitions for quantum behavior. The article should be required
reading for all computer science students, whose intuitions are still being formed.

A.5 QUANTUM CRYPTOGRAPHY

As mentioned before, Shor’s factorization algorithm has yet to be implemented on
more than a few qubits. But if the efficient factorization of large numbers becomes
possible, RSA cryptography will need to be replaced by a new form of cryptogra-
phy, one that will not be foiled by classical or quantum computers. Conveniently,
such a method already exists; in fact, it was developed before Shor invented his fac-
torization algorithm. Coincidentally, it too relies on quantum mechanics.

The cryptographic method in question is quantum key distribution, which was
introduced in 1984 by Charles H. Bennett and Gilles Brassard in “Quantum cryp-
tography: Public key distribution and coin tossing” (Bennett and Brassard, 1984)
and is thus commonly referred to as BB84. In short, quantum key distribution is se-
cure not because messages are encrypted in some difficult-to-decrypt way but rather
because eavesdroppers cannot intercept messages undetected, regardless of compu-
tational resources.

Although quantum key distribution is the most famous cryptographic applica-
tion of quantum mechanics, it is not the only one, and it was not the first. In the
1960s, Stephen Wiesner conceived of two applications: a way to send two messages,
only one of which can be read, and a way to design money that cannot be counter-
feited. His ideas were largely unknown until 1983, when he described them in an
article called “Conjugate coding” (Wiesner, 1983).

Needless to say, the papers mentioned earlier were not the only milestones
in the development of quantum cryptography. Curious readers should consult
these two installments of SIGACT News’ “Cryptology column”: “Quantum cryp-
tography: A bibliography” by Gilles Brassard (1993) and “25 years of quantum
cryptography” by Gilles Brassard and Claude Crépeau Brassard and Crépeau
(1993). Since the publication of those articles, quantum cryptography has ma-
tured from theory and experiments to commercially available products; devel-
opments are frequently announced by manufacturers such as MagiQ Technolo-
gies (http://www.magiqtech.com/), id Quantique (http://www.idquantique.com/),
and Smart Quantum (http://www.smartquantum.com/).

A.6 QUANTUM INFORMATION

Secure channels of communication are of course crucial, but security is not the only
consideration in the transfer of information. Accordingly, quantum cryptography
is just one of several topics in the burgeoning field of quantum information. Other

323

http://www.magiqtech.com/
http://www.idquantique.com/
http://www.smartquantum.com/

324

Appendix A Historical Bibliography of Quantum Computing

topics include quantum error correction, fault-tolerant quantum computation, quan-
tum data compression, and quantum teleportation.

Information needs to be protected not just from eavesdroppers but also from
errors caused by channel noise, implementation flaws, and, in the quantum case,
decoherence. Peter W. Shor, a trailblazer not just of quantum algorithms but also
of quantum error correction and fault-tolerant quantum computation, was the first
to describe a quantum error-correcting method. In his 1995 article “Scheme for re-
ducing decoherence in quantum computer memory” (Shor, 1995), he demonstrated
that encoding each qubit of information into nine qubits could provide some pro-
tection against decoherence. At almost the same time but without knowledge of
Shor’s article, Andrew M. Steane wrote “Error correcting codes in quantum theory”
(Steane, 1997), which achieved similar results. Very shortly thereafter, Shor and
A.R. Calderbank presented improved results in “Good quantum error-correcting
codes exist” (Calderbank and Shor, 1996). In the late 1990s, when research on
quantum error correction and fault-tolerant quantum computation ballooned, Shor,
Steane, and Calderbank remained among the major contributors.

Error is not the only thing information theorists strive to reduce; they also seek
to reduce the space required to represent information. The landmark paper on the
classical representation and compression of data was “A mathematical theory of
communication” by Claude E. Shannon (1948), the “father” of information the-
ory. In this 1948 paper, Shannon showed that it is possible, up to a certain limit, to
compress data without loss of information; beyond that limit, some information is
necessarily lost. (Seminal in so many ways, this paper also laid the groundwork for
classical error-correcting codes.)

Almost 50 years later, Benjamin Schumacher developed a quantum version
of Shannon’s theorem. Schumacher first described his finding in an article called
“Quantum coding,” which he submitted to Physical Review A in 1993 but which was
not published until 1995 (Schumacher, 1995). In the (unfortunate but not uncom-
mon) lag between submission and publication, he and Richard Jozsa published “A
new proof of the quantum noiseless coding theorem” (Jozsa and Schumacher, 1994),
which offered a simpler proof than the original article.

Not everything in quantum information theory has a precedent in classical infor-
mation theory. In 1993, Charles H. Bennett et al., dazzled the scientific community
and delighted science fiction fans by showing that quantum teleportation is theo-
retically possible. In “Teleporting an unknown quantum state via dual classical and
Einstein—Podolsky—Rosen channels” (Bennett et al., 1993), they described how an
unknown quantum state could be disassembled and then reconstructed perfectly in
another location. The first researchers to verify this method of teleportation exper-
imentally were Dik Bouwmeester et al., who reported their achievement in 1997 in
“Experimental quantum teleportation” (Bouwmeester, 1997).

A.7 MORE MILESTONES?

Quantum computing continues to entice and engross researchers, who will no doubt
continue to ask challenging questions, discover inventive and elegant solutions,
identify stumbling blocks, and achieve experimental triumphs. To learn how to ap-
prise yourself of developments, consult Appendix D, “Keeping abreast of quantum
news: Quantum computing on the Web and in the literature.”

news:Quantum

Appendix B
Answers to Selected Exercises

CHAPTER 1
Ex. 1.1.1:

2%+ 1=+ D)2 +1)=0. (B.1)

As neither of the factors have real solutions, there are no real solutions to the entire
equation.
Ex. 1.1.2: —i.

Ex. 1.1.3: —1 —3i; -2+ 14i.

Ex. 1.1.4: Simply multiply out (—1 + i)?> + 2(—1 +i) + 2 and show that it equals 0.
Ex. 1.2.1: (-5,5).

Ex. 1.2.2: Setting ¢; = (a1, b1), ¢ = (az, b2), and ¢z = (a3, b3). Then we have

c1 x (3 x ¢3) = (a1, by) x (apa3 — bybs, arbs + azb,)
= (ai(aza3 — babs) — bi(azbs + azbhy), a1 (azbs + azb,) + (azas — babs)by)
= (a1a2a3 — a1bybs — biaybs — bibyas, ajazbs + a1braz + biazas — bibybs)
= (a1ay — b1by, a1by 4 b1az) x (a3, b3)
= ((a1, by) x (az, b)) x (a3, b3) = (c1 x ¢2) X c3. (B.2)
Ex.1.2.3: =3

Ex. 1.2.4: 5.
Ex. 1.2.5: Setting ¢; = (a1, b1) and ¢; = (ay, by). Then

erlleal = y/a? + b2\Ja? + 03 =/ (a? + b7) (a3 +)
= a%a% + b%a% + b%b% + alzb% = \/(Lllbl — a2b2)2 + (dlbz + a2b1)2

= |(a1b1 —arby, a1by + a2b1)| = |c1c3]. (B3)

325

326 Appendix B Answers to Selected Exercises

Ex. 1.2.6: This can be carried out algebraically like Exercise 1.2.5. One should also
think of this geometrically after reading Section 1.3. Basically this says that any side
of a triangle is not greater than the sum of the other two sides.

Ex. 1.2.7: Examine it!

Ex. 1.2.8: Too easy.

Ex. 1.2.9: (a1, bl)(—l, 0) = (—1611 — 0b1, Oa; — 1b1) = (—al, —bl).
Ex. 1.2.10: Setting ¢; = (a1, b1) and ¢; = (ay, by). Then

i+ =(a, =b1) + (a2, —=b2) = (a1 + a2, —(b1 + b)) = c1 + ¢2. (B.4)
Ex. 1.2.11: Setting ¢; = (a1, b1) and ¢, = (ay, by). Then

¢l x ¢ = (a1, —b1) x (a2, —b2) = (a1a2 — biby, —a1by — azby), (B.5)

(a1a2 — bi1by, —((llbz + dzbl)) =1 X Cp. (B6)

Ex. 1.2.12: Although the map is bijective, it is not a field isomorphism because it
does not respect the multiplication, i.e., in general,

—(c1 X)) # —C1 X —C; =1 X €. (B.7)

Ex. 1.3.1: 3+ 0i.
Ex.1.3.2: 1 - 2i.
Ex. 1.3.3: 1.5+ 2.6i.
Ex. 1.3.4: 5i.
Ex. 1.3.5: If ¢ = a + bi, the effect of multiplying by ry is just roa + robi. The vector
in the plane has been stretched by the constant factor ry. You can see it better in
polar coordinates: only the magnitude of the vector has changed, the angle stays the
same. The effect on the plane is an overall dilation by ry, and no rotation.
Ex. 1.3.6: The best way to grasp this exercise it to pass to the polar representation:
let ¢ = (p, 0) and ¢y = (po, 6p). Their product is (ppo, 6 + 6). This is true for all c.
The plane has been dilated by the factor py and rotated by the angle 6.
Ex. 1.3.7: 2i.
Ex. 1.3.8: (1 —i)’ = —4+ 4.
Ex. 1.3.9: 1.0842 + 0.2905i, —0.7937 + 0.7937i, —0.2905 — 1.0842i.
Ex. 1.3.12:

a — ﬂei(91—92). (B.8)

(S %)
Ex. 1.3.15: Let ¢y = dy + dyi be our constant complex number and x = a + bi be an
arbitrary complex input. Then (a + dy) + (b + dy)i, i.e. the translation of x by c.
Ex.1.3.17: Seta” = (aa’ + b'c), b" = (a’'b+b'd), ¢’ = (ac’ + cd’'),andd” = (bc’ +
dd’) to get the composition of the two transformations.
Ex. 13.18: a =1,b=0,c =0,d = 1. Notice that ad — bc = 1, so the condition is
satisfied.

Ex. 1.3.19: The transformation _d;‘xfa will do. Notice that it is still Mobius because

da — (—b)(—c) = da — bc = ad — bc. (B.9)

Appendix B Answers to Selected Exercises 327

CHAPTER 2
Ex. 2.1.1:
12450]
6 + 6i
(B.10)
2.53 - 6i
_21.4 +3i }
Ex. 2.1.2:
V+ W4+)] = VIil+ W+ X[j] = VIj]1+ W[jl1+ X[j])
= (V[j1+ W[jD + X[j] = (V+ W)[j] + X[/]
=((V+ W)+ X)[j]. (B.11)
Ex. 2.1.3:
_132.6 —13.6i]
—14 — 56i
(B.12)
48 — 12i
i 32 —42i }
Ex. 2.1.4:
((c1 +c2)-V)[j] = ((c1 +c2) x (V[]]) = ((er x (V[]]) + (2 x (V[]])
= (c1- V)[j]+ (c2- V)[j] = ((c1 - V) + (e2- V))[]]. (B.13)

12
Ex. 2.2.1: They are both equal to |:—24:| .

6
Ex. 2.2.3: For property (vi):

—24+6i —1246i
. (B.14)
—12-4i -—-18+4i

For property (viii):

5+3i 3412
. (B.15)
—6+10i 17i

328 Appendix B Answers to Selected Exercises

Ex. 2.2.4: Property (v) has the unit 1. Property (vi) is done as follows:

(c1-(c2- A)[j, k] = c1 x ((c2- A)[], k]) = c1 x (c2 x A[], k])

=(c1 x) x A[J, k] = ((c1 x) - A)[J, k]. (B.16)
Property (viii) is similar to this and similar to Exercise 2.1.4.
Ex. 2.2.5:
_6—31' 0 1 6+3i 2-—12i 19i
2412i 5421 245 |; 0 5-21 17 ;
—19i 17 3—4.5i 1 2—-5 3445i
| 6+ 3i 0 1
2-12i S5-21i 2-5i |- (B.17)
19i 17 344.5%
Ex. 2.2.6:
(c- A)[j. k] = (c x (A[j. k) = x (A[j. k]) = (€ - A)[]. k]. (B.18)
Ex. 2.2.7: We shall only do Property (ix). The others are similar.
c-A=Cc-A) =@- A =¢. 4 =z. Al (B.19)
Ex. 2.2.8:
37 —13i 10 50 — 44i
1243 6+28 3+4i |- (B.20)

314+9 —-6+4+32i 4-060i

Ex. 2.2.9:

((Ax B)")[j. k] = (A* B[k, j]=Y_ Alk,i] x Bli, jl=)_ Bli, j] x Ak,]

i=0 i=0
= Z BT[j,i] x AT[i, k] = (BT « AT)[j, k]. (B.21)
=0

Ex. 2.2.10:
26+52i 9-—7i 48+21i
60 —24i 1-29i 15-22i |- (B.22)
26 14 20422

Appendix B Answers to Selected Exercises

Ex. 2.2.11:

(AxB) =(AxB) =(A+B) =B +A =B+ A'. (B.23)
Ex. 2.2.13: Every member of Polys can be written as

co+ c1x + c2x% + 3 + cax* + ¢csx° + 0x® + 0x7. (B.24)

It is obvious that this subset is closed under addition and scalar multiplication.
Ex. 2.2.14: Given two matrices

and , (B.25)

their sum is

xExy+y (B.26)

—(y+y) x+x

and so the set is closed under addition. Similar for scalar multiplication. This sum is
also equal to

flx+yi)+ f(x'+ i) = f((x+x)+ (y+ y)i). (B.27)
co)
c1 c
Ex. 2.2.17: A given pair I goes to
Cm-1 i
[CosC1s -+ s Cmt1sChr €y oo nn] T (B.28)
Ex. 2.2.18: An element [cg,cy, -, cn_1]’ of C™ can be seen as the element
Co 0
C1 0
. , of C™ x C".
Cm—1 0
Ex. 2.3.1:
2-01,2,3]" +[1, -4, —4]" = 3,0, 2]". (B.29)

Ex. 2.3.2: The canonical basis can easily be written as a linear combination of these
vectors.

Ex. 2.4.1: Both sides of Equation (2.101) are 11 and both sides of Equation (2.102)
are 31.

Ex. 2.4.3: We shall show it for Equation (2.101).

1
(A+B)T = N (A+B)T+C= vl (B.30)

329

330 Appendix B Answers to Selected Exercises

and the Trace of this matrix is 5. The right-hand side is Trace(A” » B) = —2 added
to Trace(AT x C) = 7 for a sum of 5.

Ex. 2.4.5: /439.
Ex. 2.4.6: /47.
Ex.2.4.7: 11

Ex. 2.4.8:
(V, V) =|V||V'| cos 6, (B.31)
8 = 3+v/10cos#, (B.32)
cosf = 0.843, (B.33)
0 =32.51°, (B.34)

Ex. 2.5.1: Their eigenvalues are -2, -2, and 4, respectively.
Ex. 2.6.1: Look at it.
Ex. 2.6.2: The key idea is that you take the transpose of both sides of
A=A (B.35)

and remember that the 7 operation is idempotent.

Ex. 2.6.3: The proof is the same as the hermitian case but with the dagger replaced
with the transpose operation.

Ex. 2.6.4: The proof is analogous to the hermitian case.

Ex. 2.6.5: Multiply it out by its adjoint and remember the basic trigonometric iden-
tity:

sin?@ + cos’>6 = 1. (B.36)

Ex. 2.6.6: Multiply it by its adjoint to get the identity.
Ex. 2.6.7: If U is unitary, then U » U’ = I. Similarly, if U’ is unitary, then U’ » U’ =
I. Combining these we get that

(UrU)x(UrUY = (UxU)« (U« UNY=UxU U« U!
=UxIxU'=UxU =1 (B.37)
Ex. 2.6.8:
diUVi,UVa) = |[UVi = UV3| = [U(Vi = V2)| = [Vi = Vol =d(W, V2). (B.3B)

Ex. 2.6.9: It is a simple observation and they are their own adjoint.
Ex. 2.7.1:

[-3,6,—4,8,—7,14]". (B.39)
Ex. 2.7.2: No. We are looking for values such that

[z, y,z]" x[a,b]" =[5,6,3,2,0,1]". (B.40)

Appendix B Answers to Selected Exercises

That would imply that za = 0 and which means either z =0 or a = 0. If z = 0, then
we would not have zb = 1 and if a = 0 we would not have xa = 5. So no such values
exist.

Ex. 2.7.3:
[342 1418 29-11i 5—i 19417 18 —40i 2 —8+6i 14+10i |
264260 18+12i —4+19 52 30—6i 15423 —4+20i 120 —10+4i
0 342 1243l 0 S5—i 19443 0 2% —18+4i
0 0 0 12 36448 60—84 6-3 30415 9—57i
0 0 0 120424 72 244+60i 66—18i 36—18i 2724
0 0 0 0 12 244108 0 6-3i 39448
2 648 10—14i 444 —4+28 48—8 9+43i 15445 66— 48i
2044 12 44100 32448 24424 12428 84+48 54418 3+5li
o 2 4418 0 4+4 28444 0 94+3i —9+87i |
(B.41)
Ex. 2.7.5: Both associations equal
18 15 12 10 36 30 24 20
9 6 6 4 18 12 12 8
-6 -5 0 0 -12 —-10 0 O
-3 -2 0 0 -6 -4 0 O
(B.42)
0 0 0 O 18 15 12 10
0 0 0 O 9 6 6 4
0 0 O 0 -6 -5 0 O
0 0 o 0 -3 -2 0 0

Ex. 2.7.6: For A ¢ C™" B e C™" and C € CP*? we have

(A® (B CO)Jj, k] = A[j/(np). k/(n'p")] x (B® C)[j Mod (np), k Mod (rn'p)]
= A[j/(np). k/(n'p")] x B[(j Mod (np))/p. (k Mod (n'p’))/p']
x C[(j Mod (np)) Mod p, (k Mod (n'p’)) Mod p']
= A[(j/p)/n. (k/p')/n'] x B[(j/p) Mod n, (k/p') Mod r']
xC[j Mod p.k Mod p'] = (A® B)[j/p.k/P'.]
xC[jMod p, kMod p'] = (A® B)® C)[J, k] (B.43)

331

332 Appendix B Answers to Selected Exercises

The center equality follows from these three identities that can easily be checked:

j/(np) = (j/n)/p. (B.44)
(j Mod (np))/p = (j/p) Mod n, (B.45)
(j Mod (np)) Mod p = j Mod p. (B.46)

Ex. 2.7.7: They are both equal to

(B.47)

AN W AN
o o0 O

12

Ex. 2.7.8: For A € C"" and B € C"™" we have

(A® B)'[j, k] = (A® B)[k, j] = (Alk/n, j/n'] x B[k Mod n, j Mod n'])

= Alk/n, j/n'] x B[k Mod n, j Mod ']
= A'[j/n’, k/n] x B'[j Mod n’, k Mod n]
= (A" ® BY[]. k]. (B.48)
Ex.2.7.9: For A e C"™" A’ e C"*™' B e C™", and B' € C"*" we will have (A *
A/) c (mem”, (B* B/) e (Cnxn”’ (A ® B) e (Cmnxm’n’, and (A/ ® B/) c (Cm’n’xm”n”.
m'n’'—1
(A® B)»(A'® B))[j. k] = Y ((A® B)[j.1] x (A'® B)[t, k])
=0
m'n’'—1
= Z (A[j/n,t/n'] x B[j Mod n, t Mod n']
=0

xA'[t/n',k/n"] x B[t Modn', k Mod n"]). (B.49)

These m’'n’ terms can be rearranged as follows:

m'—1 n'—1
(Z Alj/n,i] x AL, k/n’]) x (Z B[j Mod n,i] x BT[i, k Mod n']>
i=0 i=0

=(AxA)|j/n k/n'] x (Bx B)[j Mod n, k Mod r']

=((AxA)® (BxB))[j k] (B.50)

Appendix B Answers to Selected Exercises 333

CHAPTER 3
Ex.3.11:
[0,0,20,2,0,5]". (B.51)
Ex.3.1.2:
000000
000000
, 100010
MM = M = , (B.52)
000100
010001
001000
000000
000000
X) , |00 1000
MMM = M?M = MM? = M° = , (B.53)
000100
100010
010001
000000
000000
]\46=M3M3=001000 (B.54)
000100
100010
010001

They all end up in vertex 2.

Ex. 3.1.3: The marbles in each vertex would “magically” multiply themselves and
the many copies of the marbles would go to each vertex that has an edge connecting
them. Think nondeterminism!

334 Appendix B Answers to Selected Exercises

Ex. 3.1.4: The marbles would “magically” disappear.
Ex. 3.1.5: The adjacency matrix is

o
—_

—_
o o O

: (B.55)

[
o o o o o o o
o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o o o o
©O ©o © ~m ©o o o o o
o o o o o

- o o ©o ©o o o o o
©O = ©o ©o ©o o o o o
_

_

—_
o

(= - e =)
—_

o
o o O

—_

A? A*

Il
o o o o o o o o
o e} o e} o o o
o o o o o o o o
o o o o o
— o o o o o o o o
o o o e} o o o o
o o o o o o o o
e} e} e} o o o o o
— o o o e} o o o o
Il
) e} -} e}) o o o
o o e} o o o o
e} e} e} o o e} o o
o o o o o
e} o o o o o o o
— o o o o o o o o
o o o o e} o o o
o o o o o o o o
=} o o o o o o o

—_
—_
—_
—_
—_
—_
—_
—_

1

(B.56)
If we start in state X =[1,1,1,1,1,1,1,1,1]7, then AX=[110101 0 2 3]7,
and A2X = A*X=[110100006].

Ex. 3.2.1:

y_ [i 3 iT' (B.57)

Appendix B Answers to Selected Exercises
Ex. 3.2.2: We are given that), M[i, k] = 1 and), X[i] = 1. Then we have
D VI =) (MX)[i] =) (M, k] X[k])
i i ik

= 3 (M KXTRD) = 3O Mi. k) XTK] = 3 (1 x XKD = 1.
k i k i k

(B.58)
Ex. 3.2.3: This is done almost exactly like Exercise 3.2.2.
Ex. 3.2.4:

= D=
= D=

Ex. 3.2.5: Let M and N be two doubly stochastic matrices. We shall show that the
jth row of M x N sums to 1 for any j. (The computation for the kth column is
similar.)

S (M N)joil = 30 S (ML K] x NIk, i) = 3 (M. k] x N[k, i])
i k i

k

1

=> [M[j, k1 x ()~ NIk, i])} = > [M[j. k] x ()] =1. (B.60)
k i k

Ex. 3.2.6: Let m stand for math, p stand for physics, and ¢ stand for computer sci-
ence. Then the corresponding adjacency matrix is

m p C
m 0l 07 02 049 023 028
A=p |06 02 02|; A’=|024 048 028]; (B.61)

c | 03 01 0.6 027 029 0.44

0.3709 0.3043 0.3248 0.335576 0.331309 0.333115
A*=103084 03668 0.3248 |: A¥= 033167 0335215 0.333115
0.3207 0.3289 0.3504 0.332754 0.333476 0.33377
(B.62)
To calculate the probable majors, multiply these matrices by [1, 0, 0]7, [0, 1, 0]”, and
[0,0,1]7.
Ex. 3.3.1:

cos?h sin’6 0
sin?0 cos26 0. (B.63)
0 0 1

335

336 Appendix B Answers to Selected Exercises

The fact that it is doubly stochastic follows from the trigonometric identity
sin?6 + cos>6 = 1. (B.64)
Ex. 3.3.2: Let U be a unitary matrix. U being unitary means that

(U UDj K=Y (UL, i x U'li, kD) = Y (UL, 1 x UTK, 1) = 84

L 1

(B.65)

where §; ; is the Kronecker delta function. We shall show that the sum of the jth
row of the modulus squared elements is 1. A similar proof shows the same for the
kth column.

> IULLKIP =Y (UL k] < UL KT) =875 = 1. (B.66)
k k

The first equality follows from Equation (1.49).
Ex. 3.3.3: Let U be unitary and X be a column vector such that) i1X [1? = x.

SIUDGIP =)
j

J

2

=33 |wWlj. k1 x X[iD[
ik

> (ULj. k] x X[j1)
k

=3 (WL K x X1j) x WL KT x XTjD)]
ik

=D D (UL KIP x IX[]IP) =1 xx =x, (B.67)
ik

which follows from the solution to Exercise 3.3.2.
Ex. 3.4.2:

N®N= (B.68)

ol | S IENe] LNl F]|)
QOl—= oI oI Ol

Ol oI oI Y=
ol | S IENe] PNl]|)

Ex. 3.4.3:

M®N = (B.69)

A= = N N
A= = N N

AN N = N
[\ ST« | SR [N [

Appendix B Answers to Selected Exercises

Ex. 3.4.4: For M € C"™ and N € C"™", we willhave M ® N € C"""" The edge
from j to k in Gygy Will have weight

M[j/n, k/n'] x N[j Mod n, k Mod '] (B.70)
and will correspond to the pairs of edges
(j/mn —> k/n', j Mod n — k Mod n'). (B.71)

Ex. 3.4.5: This is very similar to Exercise 3.4.4.

Ex. 3.4.6: “One marble traveling on the M graph and one marble traveling on the
N graph” is the same as “One marble on the N graph and one marble on the M
graph.”

Ex. 3.4.7: It basically means that “A marble moves from the M graph to the M’
graph and a marble moves from the N graph to the N’ graph.” It is the same as saying
“Two marbles move from the M and N graph to the M’ and N’ graph, respectively.
See the graph given in Equation (5.47).

CHAPTER 4

Ex. 4.1.1: The length of |v) is [¥/)| = 4.4721. We get p(x3) = 15052- P(Xs) = 755512+

Ex. 4.1.2: This was done in the text where ¢ = 2. The general problem is exactly the
same.

Ex. 4.1.3: If they represented the same state, there would be a complex scalar ¢ such
that the second vector is the first one times c. The first component of the second
vector is 2 x (1 + 1), and 1+ is the first component of the first vector. However,
if we multiply the second component, we get 2 (2 — i) =4 — 2i, not 1 — 2i. Hence,
they do not represent the same state.

Ex. 4.1.9: (| =[3 —1i,2i].
Ex. 4.2.2: S,| 1) = {). (It flips them!) If we measure spin in state down, it will stay
there; therefore, the probability to find it still in state up is zero.

Ex.4.2.3: Taking A[], k] = A[k, j] as the definition of hermitian, we considerr - A,
where 7 is a scalar.

(r-A)j.kl=r x Alj, k] =r x Alk, j] = (r - A)[k, j]. (B.72)

We used the fact that for any real r,r =7.

Ex.42.4: Let M = |:[1) :)j| M is certainly hermitian (in fact, real symmetric). Multi-

ply it by i:

N=iM= . (B.73)

337

338 Appendix B Answers to Selected Exercises

. .o . .o i L
Now, N is not hermitian: the conjugate of N is [' oli|’ whereas every hermitian is
its own conjugate. l
Ex. 4.2.5 Let A and A’ be two hermitian matrices.

(A+ ANJj, k] = Alj, k1 + A'[j, k] = Ak, j]+ A'[k, j]
= Alk, j]+ A'[k, j] = (A + Ak, j]. (B.74)

Ex. 4.2.6 Both matrices are trivially hermitian by direct inspection (the first one has
i and —i on the nondiagonal elements, and the second is diagonal with real entries).
Let us calculate their products:

2 =4
Q] * Qz = , (B75)
2i 4
2 =2
Qz * Ql = . (B76)
4i 4
They do not commute.
Ex. 4.2.7
[Ql, Qz] = Ql *Qz — Qz*Ql
1+i -3-2i 1—1 -1 2i —2-2i
= — = . (B.77)
-1 3—i 342 3+1i 2—-2i =2i
CHAPTER 5
Ex. 5.1.1:
(34 2i)|0) + (4 —2i)|1). (B.78)
Ex. 5.1.2:

(0.67286 — 0.15252i)|0) 4 (0.09420 — 0.71772i)|1). (B.79)

He0)e|1) =

Ex. 5.1.3:
Ex. 5.1.4:
00 [0
0113
1010
1112
Ex. 5.2.1:
1 1
00 O
Ex. 5.2.2:
1 0
0 1

000
001
010
011
100
101
110
111

S O r O O O O O

s

Appendix B Answers to Selected Exercises

011) =

if and only if either x or y or zis 1.

Ex. 5.2.3:

NOR=NOTxOR=

000
001
010
011
100
101
110
111

SO O O O = O O O

bl

11,1,1) =

000
001
010
011
100
101
110
111

I
— O O O O o o O
L

(B.80)

(B.81)

(B.82)

(B.83)

(B.84)

339

340 Appendix B Answers to Selected Exercises

Ex. 5.2.4: It means that it does not matter which operation is the “top” and which is
the “bottom,” i.e., the wires can be crossed as follows:

o 4 e = B e (B.85)

Ex. 5.2.5: It means that we can think of the diagram as doing parallel operations,
each of which contain two sequential operations, or equivalently, we can think of the
diagram as representing two sequential operations, each consisting of two parallel
operations. Either way, the action of the operations are the same.

Ex. 5.2.7:

NOT x OR+(NOT ® NOT)

Ex. 5.2.8:

000 001 010 011 100 101 110 111
00 1 0 0 0 0 0 0 0
01

—_
—_

0 0 0 0 1 0 (B.87)
0] 0 1 1 0 1 0 0 0 ‘
mj{o o o 0 0 0O 0 1
Ex. 5.3.2:
|x) |x) |x)
() |y) |y)
(B.88)
|2) z@ (x A y)) 1Z@ (x AY)® (x AY)) =12)
Y A

Ex. 5.3.3: Setting |z) = |1) gives the NAND gate.

Appendix B Answers to Selected Exercises

Ex. 5.3.4: Combining a Fredkin gate followed by a Fredkin gate gives the following:

0,y,2) — 10, y,2) —> 10, y, 2)

and

1, y,2) — 1,2, y) — |1, y, 2).

(B.89)

(B.90)

Ex. 5.4.1: Except for Y all of them are their own conjugate. Simple multiplication
shows that one gets the identity.

C C
L R (B.91)
C1 Co
ay + bt b1 —aii
L S e (B.92)
ay + byi —bo + api

Ex. 5.4.2:
0 1
1 0
0 —i
i 0

Ex. 5.4.9: One way of doing this is to show that both gates have the same matrix
that performs the action.

CHAPTER 6
Exercise Qe —— o0 Oe ——— o0 Oo/\ o0
le—— ol le ol le—— ol
0 1 0 1 0 1
ol1 0 01 1 0l0 0
1.0 0 0 00 01 10 11 00 01 10 11 (B.93)
0|1 0 0 ofloo]o 1 0 0
01 0 Ojptr|{o0 1 0 oflot|l1 0 0 O
6.1.3 w|lo o 1 ofltolo o o 1
0 0 0 1{11{0 0 0 1 {/11]0 0 1 o0
00 1 0
. 10,0)+]1,1) 10,0)+1,0) 10,1)+]1,1)
6.1.4- T T \/E
. 10)—|1) 10)—[1) [0)+[1) 10)—|1) —0)—[1) 10)—[1)
615 |[ogp[ogn]] (e[t =
. 10)—I1) 10)—[1) 10)—[1)
6.1.6: +1|0>[ﬂ] +1|1)[ﬂ] —1|1>[ﬂ]

Ex 6.1.2: The conjugation of this matrix is the same as the original. If you multiply
it by itself, you get I4.

Ex. 6.2.1: 2" 5.

(2—))',)2 and 2.

Gy = (@1

341

342 Appendix B Answers to Selected Exercises

Ex. 6.2.2:

00,0 00,1 01,0 01,1 10,0 10,1 11,0 11,1
00,0 [1]
00,1 1

01,0 1

01,1 1

10,0 1

10,1 1

11,0 1
1,1 | 1

(B.94)

Ex. 6.2.3:

00,0 00,1 01,0 01,1 10,0 10,1 11,0 11,1
00,0 [1 T
00,1 | 1

01,0 1

01,1 1

10,0 1

10,1 1

11,0 1
11,1 | 1

(B.95)

1

Ex. 6.2.4: We saw for n = 1, the scalar coeflflcient is27 2. Assume it is true for n = k.

That is the scalar coefficient of H®* is 272. For n = k + 1, that coefficient will be
1

multiplied by 272 to get

% +) k+1

=2 2. (B.96)

NTES
NI

=2

=

27227
Ex. 6.2.5: It depends how far away the function is from being balanced or constant.
If it is close to constant than we will probably get |0) when we measure the top
qubit. If it is close to constant, then we will probably get |1). Otherwise it will be

random.

Ex. 6.3.1:

m 000 & 011 = 011; hence, f(000) = f(011).
m 001 & 011 = 010; hence, f(001) = f(010).
m 010 ® 011 = 001; hence, f(010) = f(001).
m 011 & 011 = 000; hence, f(011) = £(000).
® 100 011 = 111; hence, f(100) = f(111).
m 101 @ 011 = 110; hence, f(101) = f(110).
m 110 011 = 101; hence, f(110) = f(101).
® 111 ® 011 = 101; hence, f(111) = f(101).

Appendix B Answers to Selected Exercises

Ex. 6.4.1: For the function that “picks out” 00, we have

00,0 00,1 01,0 01,1 10,0 10,1 110
00,0 [1

00,1 | 1

01,0 1

01,1 1

10,0 1

10,1 1

11,0 1
1.1 |

For the function that “picks out” 01, we have

00,0 00,1 01,0 01,1 10,0 10,1 11,0
00,0 [1
00,1 1
01,0 1
01,1 1
10,0 1
10,1 1
11,0 1
11,1 |

For the function that “picks out” 11, we have

00,0 00,1 01,0 01,1 10,0 10,1 11,0
00,0 [1
00,1 1
01,0 1
01,1 1
10,0 1
10,1 1
11,0
11,1 | 1

11,1

11,1

11,1

(B.97)

(B.98)

(B.99)

Ex. 6.4.2: The average is 36.5. The inverted numbers are 68, 35, 11, 15, 52, and 38.

Ex. 6.4.3:

1 1
(Ax)i j] =S Al k] x Ak, [1= 3 (2 x
LA =2 Al J ;(2 2)

(B.100)

343

344 Appendix B Answers to Selected Exercises

Ex. 6.5.1: 654,123, and 1.

Ex. 6.5.2: The remainders of the pairs are 1, 128, and 221.

Ex. 6.5.3: The periods are 38, 20, and 11.

Ex. 6.5.4: GCD(7% + 1,247) = GCD(117650,247) = 13 and GCD(7° —1,247) =
GCD(117648,247) = 19. 13 x 19 = 247.

CHAPTER 7
Ex. 7.2.2:

Ul=CNOT®CNOT; U2=U1xU1

— (CNOT ® CNOT) « (CNOT ® CNOT). (B.101)
(100 0]
cvor=|" 100 (B.102)
0001
001 0]
[1 0000000000000 O0 O]
01 0000000000O0O0O0 0O
000100000000O0O0O00O
001000000000O0O0O00O
000010000000O0O0O00O
000001000000O0O0O0 O
0000000100000O0O00O
cnoTecNor< |0 0 0000 1000000000 Lo
0000000000O0OTLIO0O00O0
000000000O0OOOTOO
000000000O0O0OOGO 0O
0000000000O0OOOTO
000000001 0000O0O0 0O
0000000001 000O0O00O
0000000000O0T100O00O
(0000000000100 00 O]

Appendix B Answers to Selected Exercises 345

(CNOT® CNOT)*(CNOT® CNOT) =

1 00 0O0O0OOOOOOOO0OTO0OO 0
01 000O0O0OO0OO0OOOOOOSOGO
001 00O0OO0OOOOOOOOSO0OTO
0600010O0O0OO0OO0OOOO0OOOSO0OTGO 0
0 000O1O0O0OO0OO0OO0OO0OO0OGO0OOSO0OTGO
0000O0O1TO0OO0OO0OOOOOOSO OO
0 000O0OO0O1TO0O0OOOOSOOOO
0 000O0OO0OO1O0OO0OO0OO0OOOGO0OTGO (B.104)
0000O0OO0OOO0O1O0O0OO0OOOO0OTGO
0 000OO0OO0OOOOT11TO0OOOOOGO
0 000OO0OOOOOOT11TO0OOOOTGO
0 00O0OO0OO0OOOOOOT11O0O0OO0OTGO
0 00O0OO0OOOOOOOOT1TO0O0OTGO O
0 00O0OO0OO0OOOOOOOOTTO0OTGO
0 000OO0OOOOOOOOOOT1ITO

| 0000000O00O0OO0COO0O0O0 T]

Ex. 7.2.3: Observe that U can be divided into four squares: the left on top is just
the 2-by-2 identity, the right on top and the left at the bottom are both the 2-by-2
zero matrix, and finally the right at the bottom is the phase shift matrix Rygg. Thus,
U = I, ® Rys0, and it acts on 2 qubits, leaving the first untouched and shift the phase
of the second by 180.

CHAPTER 8

Ex. 8.1.2: n =1,417,122.

Ex. 8.1.3: The best way to show this is with a series of trees that show how to
split up at each step. If at a point, the Turing machine splits into n > 2 states, then
perform something like the following substitution. If n = 5, split it into four steps

346 Appendix B Answers to Selected Exercises

as follows:

/
yoN
. .

1

7
N
.

(B.105)

If n = 2, then no change has to be made. If n = 1, then do the following substi-

tution:
B
A—=B = A (B.106)
B
And finally, if n = 0, make the following substitution:
A
A = A (B.107)

Ex. 8.2.1: Following Exercise 8.1.3, every Turing machine can be made into one that
at every step splits into exactly two configurations. When a real number is generated
to determine which action the probabilistic Turing machine should perform, convert

that real number to binary. Let that binary expansion determine which action to
perform. If “0,” then go up. If “1,” then go down.

A

Appendix B Answers to Selected Exercises

Ex 8.3.1: For a reversible Turing machine, every row of the matrix U will need to
have exactly one 1 with the remaining entries 0. For a probabilistic Turing machine,

every column of the matrix U will need to sum to 1.

Ex. 8.3.3: We see from the table in the text that Grover’s algorithm starts get-
ting quicker somewhere between 10 and 15. A little analysis gives us the following
table:

Classical Brute-Force Search

Quantum Grover’s Algorithm

n 2" ops Time V2" ops Time
10 1,024 0.01024 second 32 0.032 second
11 2,048 0.02048 second 45254834 0.045254834 second
12 4,096 0.04096 second 64 0.064 second
13 8,192 0.08192 second 90.50966799 0.090509668 second
14 11,6384 0.16384 second 128 0.128 second
15 32768 0.32768 second 181.019336 0.181019336 second

Already at n = 14, Grover’s algorithm is quicker.
Ex. 8.3.4:

Classical Brute-Force Search

Quantum Grover’s Algorithm Search

n n! ops Time /n! ops Time
5 120 0.0012 second 10.95445115 0.010954451 second
10 3628800 36.288 seconds 1904.940944 1.904940944 seconds
15 1.30767E+12 151.3512 days ~ 1143535.906 0.013235369 days
20 24329E+18 770940.1248 years 1559776269 18.05296607 days
25 1.55112E+25 4.91521E+12 years 3.93843E+12 124.8012319 years
30 2.65253E+32 8.40536E+19 years 1.62866E+16 516090.7443 years
40 8.15915E+47 2.58548E+35 years 9.0328E+23 2.86232E+13 years
50 3.04141E+64 9.63764E+51 years 1.74396E+32 5.52629E+21 years
60 8.32099E+81 2.63676E+69 years 9.12194E+40 2.89057E+30 years
70 1.1979E+100 3.79578E+87 years 1.09447E+50 3.46816E+39 years
100 9.3326E+157 2.9573E+145 years 9.66055E+78 3.06124E+68 years
125 1.8827E+209 5.9658E+196 years 4.339E+104 1.37494E+94 years

(B.108)

(B.109)

347

348 Appendix B Answers to Selected Exercises

CHAPTER 9

Ex 9.1.1: No. It implies that ENC(—, Kg) is injective (one-to-one) and that
DEC(—Kp) is surjective (onto).
Ex 9.1.2: “QUANTUM CRYPTOGRAPHY IS FUN.”

Ex 9.2.1:

B | <) with respect to + will be —1| —).

m | |) with respect to + will be —1| 1).

m |) with respect to + will be %| N — %| —).
B | \,) with respect to + will be —%l M+ \/Lil —).
m | <) with respect to X will be —%|)+ \/%| .
m | |) with respect to X will be —%|) — %| LGB
m | /) with respect to X will be _«/Lil .

m | \) with respect to X will be —%l .

CHAPTER 10

Ex 10.1.1: All probabilities p; are positive numbers between 0 and 1. Therefore, all
the logarithms log,(p;) are negative or zero, and so are all terms p; log,(p;). Their
sum is negative or zero and therefore entropy is always positive (it reaches zero only
if one of the probabilities is 1).

Ex 10.1.3: Choose p(A) = %, p(B) = }1, and P(C) = p(D)=0. We get H(S) =
0.81128.

Ex 10.2.1: In Equation (10.14), D is defined as the sum of the projectors |w;){w;|
weighted by their probabilities. If Alice always send one state, say |wj), that
means that all the p; =0, except p; = 1. Replace them in D and you will find
D = Tjwy) (w1

Ex 10.2.3: Let us first write down the density operator:

1 1 1
= Z10)0] + —|1){1] + — 0] +
2|)<| |)(| (\/— f)(f'f)
1/1 1 1 1
+- | —=0) — —|1 — (0] — —=(1 B.110
(- 7m) (50 5) R
Now, let us calculate D(]0)) and D(|1)):
2 1
D(j0)) = 310), and D(1)) = z|1). (B.111)

Thus the matrix (we shall use the same letter D) in the standard basis is

(B.112)

)
I
S v

W=

Appendix B Answers to Selected Exercises

Ex 10.4.1: Suppose you send “000” (i.e., the code for “0”). What are the chances
that the message gets decoded wrongly? For that to happen, at least two flips must
have occurred: “110,” “011,” “101,” and “111.” Now, the first three cases occur with
probability (0.25)?, and the last one with probability (0.25)° (under the assumption
that flips occur independently).

The total probability is therefore 3 * (0.25)? + (0.25)* = 0.20312.

Similarly when you send “111.”

CHAPTER 11
Ex 11.1.1: At first sight, the pure state

1 1

=—I0)+ —=1
[¥) ﬁ|>+ﬁ|>

(B.113)

and the mixed state obtained by having |0) or |1) with equal probability seem to be
undistinguishable. If you measure |y) in the standard basis, you will get 50% of the
time |0) and 50% of the time |1). However, if you measure |¢/) in the basis consisting
of |) itself, and its orthogonal

1 1

= —10) — —|1),
|¢) ﬁ” ﬁ”

(B.114)

you will always detect |y). But, measuring the mixed state in that basis, you will get
|¥) 50% of the times and |¢) 50% of the times. The change of basis discriminates
between the two states.

Ex 11.1.2: Let us carry out the calculation of the average A. [v) is, in the standard
basis, of the column vector [1, ??]7. Thus the average is

A0 1)1 T
A=[1,e"?= — 1,77 . B.115
S N (B.115)
Multiplying, we get
Lo i o
A:E(e + "), (B.116)
which simplifies to
A = cos(0). (B.117)

A does indeed depend on 6, and reaches a maximum at 0 = 0.

349

350 Appendix B Answers to Selected Exercises

Ex 11.1.3: Let us compute the tensor product of S, with itself first (we shall ignore
the factor %):

0 0 0 1
0 0 1 O

S ® 8 = (B.118)
0 1 0 O
1 0 0 O

We can now calculate the average:
Lo, L _
3¢ + F¢ = cos(0) (B.119)

(using the Euler formula). We have indeed recovered the hidden phase 6!

Appendix C
Quantum Computing Experiments
with MATLAB

C.1 PLAYING WITH MATLAB

There is no better way to learn than playing. After all, that is how children learn. In
this appendix, we are going to provide the basic guidelines for “playing the quantum
computing game” with the help of the MATLAB environment.

Reader Tip. This is not a full MATLAB tutorial. We assume that a fully func-
tional version of MATLAB is already installed on your machine and that you know
how to start a session, perform some basic calculations, save them, and quit. You
should also know what M-files are and how to load them. For a crash brush up, you
can read the online tutorial by MathWorks: http://www.mathworks.com/academia/
student_center/tutorials/launchpad.html. @

C.2 COMPLEX NUMBERS AND MATRICES

We began this book by saying that complex numbers are fundamental for both quan-
tum mechanics and quantum computing, so we are going to familiarize ourselves
with the way they are dealt with in MATLAB.

To begin with, we need to declare complex number variables. This is easy: a
complex has a real part and an imaginary part, both double. The imaginary part is
declared by using the “i” or “j” character.! For example, to declare the complex
variable ¢ = 5 + i, just type

yce=5+1i
and the computer will respond with
¢ = 5.000 + 1.000:

! Signal processing engineers tend to use “j” to denote the imaginary unit, hence the notation.

351

http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html

352

Appendix C Quantum Computing Experiments with MATLAB

Or, equivalently,

ye=5+4j
¢ = 5.000 + 1.000:

Adding and multiplying complex numbers are entirely straightforward:

yd=3-2i
d=3-2i

ys=c+d
s =8+43i

yp=cxd
p=25+5i

There is also a handy complex conjugate:
) €1 = conj(c)
¢1 = 5.000 — 1.000i

You may get the real and imaginary parts of a complex number by typing
) re = real(c)
re=>5

) im = imag(c)
im=>5

One can switch from Cartesian representation to polar representation:
) r = abs(c)
r="7.0711

) angle(c)
ans = (0.78540.

And back from polar to Cartesian:
ycl=rxexp(ix*a)
¢l = 5.0000 + 5.0000:

It is extremely useful to plot a complex number. MATLAB has a lot of tools
for mathematical visualization. We are going to present just one option here: the

function compass:

) compass(re, im)

The computer will output a picture of a complex number as an arrow as in Figure 1.1
on page 16. The compass function plots the complex number as a vector springing
from the origin. The function can take several complex vectors at once (refer to the

online MathWorks documentation).

Appendix C Quantum Computing Experiments with MATLAB

Our second ingredient is complex matrices. MATLAB is extremely powerful in
dealing with matrices; indeed, the name MATLAB means MATrix LABoratory.
What about vectors? Well, vectors are matrices.” Nevertheless, first things first, so
let us start with row and column vectors:

ybra =1, 2 —1i, 3i]
bra=140i 2—-1i 0+ 3;

) ket = bra’
14 0i
2+ 1
0+3i

As you can see, the operator ' on a complex matrix M is its complex conjugate (if
the matrix is real, it is simply the transpose).
For the dot product (bra-ket), you just multiply them (there is, however, a dot()
function):
) bra x ket
ans =15

The norm function is built-in:

) norm(ket)
ans = 3.8730

So much for vectors. Let us declare a matrix, say, Hadamard:
) H=1/sqrt(2) «[11; 1 —1]

H =
0.70711 0.70711
0.70711 —0.70711

Now, we can calculate its inverse (as we found out already, H happens to be its
own inverse):
) inv(H)
ans =
0.70711 0.70711
0.70711 —0.70711

MATLAB provides a trace function:

) trace(H)
ans =0

The product is straightforward. (Caveat: If you make a dimensional mismatch,
MATLAB will return an error!)

2 A big caveat: In MATLAB matrices and vectors start at 1, not 0!

353

354

Appendix C Quantum Computing Experiments with MATLAB

) Hx 1

ans =

0.70711 0.70711
0.70711 —0.70711

We have met the tensor product several times throughout our text. Luckily,
there is a primitive for it: it is called kron, as the tensor product of matrices is often
referred to as the Kronecker product:

) kron(H, I)
ans =
0.70711 0.00000 0.70711 0.00000
0.00000 0.70711 0.00000 0.70711
0.70711 0.00000 —0.70711 — 0.00000
0.00000 0.70711 —0.00000 —0.70711

We have used eigenvalues and eigenvectors throughout our text. How to com-
pute them? Worry not! MATLAB comes to rescue. The command [E, V] =eig(M)
returns two matrices: E, whose columns are the eigenvectors of M, and V, a diagonal
matrix whose diagonal elements are the eigenvalues of M.

) [V. D] = eig(H)
V=
0.38268 — 0.92388
—0.92388 —0.38268
D=
-10
01

There is so much more to aid you in complex algebra. A quick Google search
will showcase numerous tutorials on complex matrices manipulation. You can also
find more by typing HELP at the prompt.

C.3 QUANTUM COMPUTATIONS

We are now ready for quantum computation. Here, we have two options: the first
one is to implement step by step a quantum computer emulator, following the indi-
cations of Section 7.4.

The second option is to learn how to use an existing emulator, and read the
source code (MATLAB applications are collections of M-files, it is quite easy to in-
spect them and modify the code as we deem fit). There are a few quantum emulators
in MATLAB. A very good and quite documented library is Quack, developed by
Peter Rohde at the Department of Physics of University of Queensland, Australia.
We are going to show a few things that Quack can do, and then it is your game: you
can download it, learn the few examples, and start playing right away.’

3 Although Quack is not at present a huge library, it is not a toy either. It contains functionality for
quantum computation that goes beyond the scope of this book. But do not get deterred: you can use
what you need, and perhaps, learn more as you go along.

Appendix C Quantum Computing Experiments with MATLAB

The first thing one needs to do is to initialize Quack:

) quack
Welcome to Quack! version pi/4 for MATLAB
by Peter Rohde
Centre for Quantum Computer Technology, Brisbane, Australia
http : //www.physics.uq.edu.au/ people/rohde/

Now, we initialize a two-qubit register to the ground state(|00)):
) init_state(2)
Just for fun, let us change the first qubit

) prepare_one(1)
To see what happens, print the circuit history:

) print_hist

1L,1]=11> -
2,1]1=10> —

—_— — ———

Note: Ignore the left side of the circuit (it is there just to keep track of which cells

contain the information). The right side of the equation contains the entry points

of the circuit (in this case two qubits, initialized to |1), and |0) respectively). As we

shall see momentarily, the circuit grows by concatenating gates and measurements.
Let us measure now the first qubit:

) Z_measure(1)
ans = —1

and the second:

)y Z_measure(2)
ans =1

Notice that the answer is —1 for |1) and 1 for |0). This may be a bit confusing at
first, but is consistent with the spin notation: |1) simply means spin down along the
z axis.

) print_hist

How about applying a controlled-NOT using the first qubit as control?
)y cnot(1, 2)
Better check what is happening ...
) print_hist

355

http://www.physics.uq.edu.au/people/rohde/

356 Appendix C Quantum Computing Experiments with MATLAB

And now let us apply Hadamard on the second qubit:
) H(2)
) print_hist

L1]=1>-<Z-——-—- 0— — —
2,1]=10> —-———— <Zl—-X—H-
}

What if we liked to shift the phase of the first qubit? T (see Section 5.4, it is there
for you):

) T(1)

) print_hist
{
L1]=1>-<2Z-———— o———T-
2,1]=10> ————— <Z-X-H-———
}

Let us perform some measurement. This time we are going to measure the sec-
ond qubit, again along the z axis (i.e., in the standard basis):

) Z_measure(2)
ans =1

Hint: Pause a moment, jot down the steps, and try to follow what happened.

We have written a simple circuit, provided an input, and measured the results.
Now it is all up to you: there are plenty of other gates, initialization routines, and
measurement options in Quack, which you can dig up by reading the documenta-
tion. Investigate what is already there and play. (By the way, Quack can be easily
extended in a number of ways. For instance, you can provide a simple GUI for de-
signing circuits. You may want to start a mini project and create your personalized
quantum computing lab).

Have fun!

Appendix D

Keeping Abreast of Quantum News:
Quantum Computing on the Web
and in the Literature

Jill Cirasella

This book covers many major developments in quantum computing, but the field is
still young, and there will no doubt be many more developments in the future. These
future developments will include research discoveries, of course, but they will also
include trends in industry, surges in media coverage, and tides of public interest.
This appendix describes tools that can help you track quantum developments of all
kinds.

D.1 KEEPING ABREAST OF POPULAR NEWS

There are scores of newspapers, magazines, and other popular news sources, any
one of which might run a story about the newest quantum development. How will
you know if one does? You can keep an eye on your favorite news sources, but you
will miss many stories that way. A better tactic is to use a news aggregator, such
as Google News (http:/news.google.com/), which allows you to search current and
past stories from a multitude of news sources. You can add Google News to your
stable of frequently visited sites, but the most efficient way to use it is to set up an
alert or RSS feed and let the news come to you. After you perform a Google News
search that yields good results, simply click “Alerts” to set up an alert that will notify
you by e-mail of new stories that satisfy your search. Alternatively, click “RSS” to
set up an RSS feed that will deliver those stories directly to your RSS reader.

In addition to the mainstream news, blogs devoted to quantum topics can be
excellent sources of information. In fact, a blog whose focus overlaps with your in-
terests can serve as a compass for navigating quantum news. Because new blogs
are started all the time and existing blogs are often left to languish, there is little
point in recommending individual blogs. Use tools such as Technorati (http://www.
technorati.com/) and Google Blog Search (http://blogsearch.google.com/) to search
for blog posts of interest and to identify blogs worth reading regularly. Look for
blogs that offer insightful analyses of news stories and easy-to-understand distilla-
tions of scientific discoveries.

Occasionally, you will need to step back from the news and brush up on back-
ground information. The best site for refreshers is Quantiki (http:/www.quantiki.

357

http://news.google.com/
http://www.technorati.com/
http://www.technorati.com/
http://blogsearch.google.com/
http://www.quantiki.org

358 Appendix D Keeping Abreast of Quantum News

org/), a wiki with tutorials and encyclopedia-style articles about quantum informa-
tion. As with all wikis, anyone can edit Quantiki entries, which means that anyone
can (knowingly or unknowingly) insert errors, inconsistencies, and nonsense. So, al-
though Quantiki is full of valid and valuable information, you cannot assume that
everything written there is correct. In other words, Quantiki is a wonderful and
informative site, but if you need to be absolutely certain of something, look it up
somewhere else too. The same is true of the popular, omnidisciplinary Wikipedia
(http://en.wikipedia.org/), which is pocked by errors and vandalism but nevertheless
has some excellent entries on quantum computing.

D.2 KEEPING ABREAST OF SCIENTIFIC LITERATURE

Are news articles, wiki entries, and blog posts sufficient to satisfy your curiosity?
Or do you want to track a topic more closely and read about developments in re-
searchers’ own words? If the latter, familiarize yourself with one or more of the
following tools for tracking the scholarly literature of quantum computing. (For tips
on how to read scientific articles, see Appendix A.) The single best source for up-to-
the-minute articles about quantum computing is arXiv (http:/arxiv.org/), an online
archive of hundreds of thousands of scientific articles. Among quantum computing
researchers, there is a strong culture of sharing articles on arXiv as soon as they are
completed, often months (sometimes years) before they are published in journals or
conference proceedings.

There are several ways to use arXiv to stay current with quantum computing.
You can periodically visit arXiv and search for articles relevant to your interests.
Alternatively, you can browse recent additions to arXiv’s quantum physics archive,
quant-ph, which includes quantum computing articles. If you prefer automatic noti-
fications, you can sign up for arXiv’s e-mail listing service or subscribe to the RSS
feed of new quant-ph submissions.

Because articles on arXiv are posted by their authors, the articles have not been
vetted by peer reviewers or cleaned up by editors. That said, arXiv has an endorse-
ment system for authors, so there is some assurance that articles on arXiv are written
by reliable researchers.

Posting to arXiv is voluntary, and some researchers do not, or do not always,
post their articles. Thus, arXiv is not a comprehensive record of quantum computing
research; indeed, no single resource is a comprehensive record of the field. That
said, there exist databases that index all articles published in high-quality science
journals. These databases are excellent aids to anyone who wants to systematically
track research on a certain topic or focus on findings that have passed a stringent
peer review process. The two biggest and best databases of this kind are Scopus and
Web of Science, both extraordinarily expensive and therefore usually available only
through academic libraries. If you have access to Scopus or Web of Science, you can
periodically visit and perform searches, or you can perform a search once and then
turn that search into an e-mail alert or RSS feed. If you are interested in multiple
topics, you can set up multiple e-mail alerts or RSS feeds.

If you do not have access to either of these databases, your best option is Google
Scholar (http://scholar.google.com/), a free Google tool for searching for journal

http://en.wikipedia.org/
http://arxiv.org/
http://scholar.google.com/
http://www.quantiki.org

Appendix D Keeping Abreast of Quantum News

articles and other kinds of scholarly literature. Google Scholar’s coverage has gaps
and its search features are not very sophisticated, but it is nevertheless remarkably
powerful and delightfully easy to use.

Once you find out about an article, how do you find the article itself? Sometimes,
the tool that makes you aware of the article’s existence also leads you to the text
of the article. For example, arXiv contains not just information about articles but
also the articles themselves. But this is not always the case. For example, although
Scopus and Web of Science contain a wealth of information about articles, they do
not contain actual articles. In other words, they are indexing databases, not full-text
databases. Meanwhile, Google Scholar is a hybrid: some results link to the full text
of articles, some link to abstracts, and some are just citations with no links.

Luckily, many libraries subscribe to numerous full-text databases and employ
tools that link from article citations to articles themselves. As a result, the full text of
an article is often only a few clicks away from the article information in Scopus, Web
of Science, or Google Scholar. Of course, different libraries subscribe to different
databases and choose different technologies for linking between databases; ask your
librarian about the tools available to you. Also, keep in mind that most journals are
available both electronically and in print. If your library does not have electronic
access to the article you want, it might have a print copy; again, talk to your librarian
about how to determine definitively whether or not your library has a certain article.

Inevitably, your library will not have every article you want — what then? Perhaps
the article (or a version of it) is freely available on arXiv, the author’s homepage,
an institutional repository, or elsewhere. In general, a search of both Google and
Google Scholar is sufficient to determine whether an article is freely available on-
line. If you do not find the article but do find a publisher’s page offering to sell you
the article, do not pay! Rather, request the article through interlibrary loan, a free
service at many libraries.

D.3 THE BEST WAY TO STAY ABREAST?

No single tool is sufficient to keep you fully informed about quantum computing.
Different tools have different strengths, and you should familiarize yourself with
those that best satisfy your needs and curiosities. For example, if you are tracking
a specific problem or technology, scientific articles are best. Furthermore, if you
value seeing new research as soon as it is released, keep an eye on arXiv. If you are
curious about which developments cause a stir and how they fit into scientific and
social contexts, pay attention to popular news stories and quantum blogs.

If your interest in quantum computing is casual, stay abreast however and when-
ever suits you. But if quantum computing is your passion or specialty, read broadly.
You never know what will excite your curiosity, provide an insight, or inspire a big
idea.

359

360

Appendix E
Selected Topics for Student Presentations

Although its history is relatively recent, quantum computing is already, by all stan-
dards, a very broad area of research. There is simply no way we can cover anything
more than a relatively small fraction of its interesting topics. There are also many
fascinating themes that are not exactly part of quantum computing per se, but are
nevertheless closely related to it.

In this appendix, we list a number of suggestions for further exploration, cover-
ing some items we omitted from our text. It is our sincere hope that students will
find them useful for their presentations or perhaps inspire them to select others that
they can discover on their own.

Note to the student: Now it is your turn! The best way to really learn something is
to teach it. There is no substitute for spending hours preparing a lecture and getting
ideas straight so that you can present them. Knowing that other people will be asking
you questions and learning from you will force you to understand the material at a
deeper level.

You are urged to choose a subject from an area that you find interesting. Much
time and energy is going to be spent learning, understanding, and preparing, so you
might as well enjoy your choice from the start.

For each of these topics, there are many different levels on which you can go
about making a presentation. You can present a superficial lecture in which the bare
outline of the idea is discussed, or you can get into the “nitty-gritty” of the techni-
cal details. Obviously, the superficial route is the easier one, but not much will be
gained from such an exercise. We urge you to understand and present a topic with
the utmost detail and depth. A presentation with a lot of hand waving is noticeably
deficient. In contrast, one with equations and nice diagrams demonstrates under-
standing and knowledge. Do not just throw a few equations on the blackboard: show
how they are derived. Develop charts and diagrams. Obviously, if the presentation
is done in a classroom setting, there are time considerations as well.

How do you go about preparing for such a task? The first thing to do is to look for
a popular account of the topic. This can be in a nontechnical magazine or on Web
page. Some of the subjects are historical; hence, a look into a few encyclopedias

Appendix E Selected Topics for Student Presentations

might be helpful. Many nontechnical articles have suggestions for further reading.
Once an introductory article is understood, you should move on to deeper, more
detailed material. This is the safest and most effective way for you to go forward in
your research.

Note to the teacher: If you are going to insist that students make presentations, we
recommend that they choose their topics as early as possible in the semester. The
more time they are given to prepare, the better the presentation will be. One pos-
sible way of arranging this is to have your students give their presentations at the
end of the semester. There is, however, another way. You can have students’ pre-
sentations scattered throughout the semester at the appropriate times. For example,
when Chapter 4 is done, you might have a student lecture on the different ways of
interpreting quantum theory (Presentation E.4.1). Before starting Shor’s algorithm,
a student might make a presentation on RSA (Presentation E.6.4) or classical fac-
toring algorithms (Presentation E.6.3). This will explain the importance of Shor’s
algorithm and place it in its historical context. Having the presentations through-
out the semester demands a lot of flexibility and juggling from the teacher and the
students (they have to present them at the time you prefer) but it can be done.

We have found that some students get lost in the morass of literature on a sub-
ject (regrettably, in this Web-centered world, to many students “doing research”
means going to Google’s home page). We suggest that a few weeks after the stu-
dents choose their topics, a private meeting be held with each one during which
they present the articles they plan to use. At that meeting, they can also be told how
much depth is expected from their presentation.

Note on the presentations: For each topic discussed, we

B give a short explanation of what the topic is and how it is related to quantum
computing (when it is not obvious);

B give a short list of possible subtopics to include in your presentation; and

B recommend some starting places to look for information about the topic.

Our list is arranged to follow the chapters of the text. However, there are many
items that could have easily fit in other places as well. It is important to realize that
our list is in no way comprehensive. There are many other areas that we could have
mentioned but did not. Feel free to find your own topic of choice.

E.1 COMPLEX NUMBERS

E.1.1 The History of Complex Numbers

We use complex numbers to help us describe parts of quantum theory. However,
complex numbers have a long and distinguished history (they go back to the six-
teenth century). At first they began as a mathematical curiosity, but as time went
on, researchers progressively realized that complex numbers are ubiquitous and im-
portant.

Make sure your presentation contains the basic facts about some of the main
players in this field and what their contribution was.

361

362

Appendix E Selected Topics for Student Presentations

A good place to start is any of the many history of mathematics textbooks avail-
able, such as Eves (1976). Might we also suggest Mazur (2002) and Nahin (1998).

E.1.2 Geometry of the Complex Plane

In Section 1.3, we briefly introduced some basic complex functions, such as the expo-
nential and polynomials. Maps from the complex plane to itself have a geometry: for
instance, the map x — x + ¢y, where ¢ is a constant complex number, represents
a translation of the plane.

In this presentation you should describe in detail (with examples!) the geometry
of simple complex maps, such as the square function, exponential, and inverse. Some
of this can be presented nicely with a computer graphics presentation.

Any basic textbook in complex analysis will do, but perhaps the classic Geometry
of Complex Numbers (Schwerdtfeger, 1980) is the best entry point.

E.1.3 The Riemannian Sphere and Mobius Transformations

The complex plane can be turned into a sphere! Indeed, by adding a point at infinity,
we can identify the plane with the so-called Riemann sphere. This is a representation
that is both pervasive and extremely fruitful in thinking of the complex domain. The
Riemann sphere model is not static: some special complex maps turn into rotations
of the sphere. We have briefly met such maps at the end of Chapter 1: the Mobius
transformations.

In your presentation you should explicitly describe the charting map from the
extended complex plane to the sphere in details, and then proceed to illustrate the
basic rotations of the sphere (use examples!).

The same references of the previous item apply here (in fact, Presentations E.1.2
and E.1.3 could be done in sequence).

E.2 COMPLEX VECTOR SPACES

E.2.1 Matrices in Computer Graphics

Many of the ideas from linear algebra that we needed for quantum computing
are also used for computer graphics. States of a graphical system are represented
by vectors and two- and three-dimensional transformations are represented by
matrices.

Assuming the linear algebra presented in Chapter 2, one can proceed with a nice
presentation describing the way researchers who deal with computer graphics work
with these ideas. A nice computer presentation is always pleasant.

A good place to start is any comprehensive computer graphics textbook.

E.2.2 History of Vector Spaces

Although the ideas of vector spaces in particular and linear algebra in general
seem simple now, their development was a long and torturous path. The ideas of

Appendix E Selected Topics for Student Presentations

higher-dimensional vectors were greeted with skepticism and ridicule. Eventually
the mathematics and physics communities saw the importance of these ideas and
embraced them completely.

A nice presentation should include a mini biography of some of the main players
and what they accomplished. A talk should include the work of Sir William Rowan
Hamilton, Hermann Grassmann, Josia Gibbs, and several others.

A good place to start is one of the many history of mathematics textbooks avail-
able, such as Eves (1976). There is a also a fascinating history of this subject by
Michael J. Crowe (1994), which is definitely worth the read.

E.3 THE LEAP FROM CLASSICAL TO QUANTUM

E.3.1 Huygens’ Principle and Wave Mechanics

The concept of interference has a long history. In 1678 the Dutch physicist Christi-
aan Huygens presented the wave theory of light, a model that dominated optics up
to the discovery of quanta. In his revolutionary treatise, Huygens described the way
a wave front propagates — the so-called Huygens’ principle. In the early 1900s the
English physicist Thomas Young introduced the double-slit experiment, which we
have encountered in Chapter 3. This seminal experiment validated the wave model
of light.

In this presentation you should clearly articulate the evolution of wave mechan-
ics from Huygens to Schrodinger, and illustrate with diagrams how it explains known
optical phenomena such as refraction and interference.

References? Plenty. Any good physics text will do. But, if we have to recom-
mend a single book, perhaps Wave Phenomena by D.H. Towne is the one (Towne,
1989).

E.3.2 Quantum Erasers

With the understanding of the double-slit experiment, one can move on to one of
the most fascinating experiments at the cutting edge of research. In the double-slit
experiment, the photon passes through both slits simultaneously. Now consider a
way of “tagging” the photon so that we would know which slit the photon went
through. Such a “tagging” would eliminate the interference phenomenon. Now con-
sider what would happen if we had some type of way to “erase” or remove the “tag”
once the photon passed the slits. In that case, the photon would have the interfer-
ence phenomenon. The amazing part is that whether or not a photon will go into
both slits will depend on whether the “eraser” is present after it passes through the
slit(s).

A presentation should explain the types of tags and erasers used. Some nice
diagrams are a good idea. There are also many variations and improvements to this
experiment that should be discussed. This is also related to the Elitzur—Vaidman
bomb-tester experiment.

There are many articles in popular science magazines. They can point to more
technical articles.

363

364 Appendix E Selected Topics for Student Presentations

E.4 BASIC QUANTUM THEORY

E.4.1 Interpreting Quantum Theory

There are many different schools of thought of how one should interpret some of
the less classical aspects of quantum theory. Some examples of the more popular
schools are Bohr’s Copenhagen interpretation, Everett’s many worlds interpreta-
tion, and Bohm’s wave function interpretation (to name a few). Many questions in
the foundations of quantum theory come down to asking what really exists and what
doesn’t, the so-called ontological issues. Other issues are the measurement problem
and how should one interpret nonlocality.

A presentation should include several of these different schools and how they
deal with a few of the foundational issues of quantum mechanics.

There are many popular books on the topic, e.g., Herbert (1987) or Pagels
(1982). There are also a few great articles on the Web at the Stanford Encyclopedia
of Philosophy. These articles should lead you to more detailed articles. Any of the
books by Roger Penrose (1994, 1999, 2005) would be worth looking into.

E.4.2 The EPR Paradox

In 1935, Albert Einstein and two younger colleagues wrote a paper entitled
“Can quantum-mechanical description of physical reality be considered complete?”
Einstein, Podolsky, and Rosen (1935). In this short paper, the authors give a simple
thought experiment in which they attempt to prove that quantum mechanics as we
have it is incomplete. They do this by considering two particles “entangled” and go-
ing off in two directions. By measuring one particle, one can determine facts about
the other particle without disturbing it.

A presentation should include the historical context of the thought experi-
ment (Schrodinger’s observation about entanglement); conservation of momentum,;
Bohm’s version of the thought experiment (conservation of spin); how EPR relates
to the tensor product of two Hilbert spaces; a discussion of hidden variables; and
possible solutions to the paradox.

A nice place to start looking into this is a paper on Stanford Encyclopedia of
Philosophy by Arthur Fine that is very readable. See also Pagels (1982). The original
EPR paper is not too difficult.

E.4.3 Bell’s Theorem

In 1964, John Bell wrote a paper (Bell, 1964, reprinted in Bell, 1987) that took the
EPR paradox one step further. Bell shows that by doing some statistical analysis on
measurement of two entangled particles, one can show that quantum mechanics is
fundamentally nonlocal.

A presentation should include the explanation of the terms local, nonlocal; what
is the inequality; some variations of the inequality; Clause and Aspects experiments;
and variations of the experiments.

There is a short discussion of Bell’s theorem in Section 9.4. There is much popu-
lar literature on this topic. Alas, much of it is silly and resorts to cheap “mysticism.”

Appendix E Selected Topics for Student Presentations

For two nice presentations, see Pagels (1982) and Gribbin (1984). That should get
you started.

E.4.4 Kochen-Specker Theorem

This is one of the most powerful and shocking theorems in the foundations of quan-
tum theory. Quantum mechanics says that before a measurement, a property is in a
superposition of basic states. Only after a measurement is there a collapse to a basic
state. One might be tempted to say that a property is really in an unknown basic
state before a measurement and the observer finds what basic state it was in after
measurement. The Kochen-Specker theorem shows that it is impossible for this to
be true. Before a measurement, the spin of a particle is in a superposition until it is
measured.

Begin by explaining why the theorem is important. The theorem is proven by
looking at a graph-coloring problem. A formal proof of this statement would be too
complicated. However, giving nice geometrical intuitive pictures would be helpful.
Show that it is possible to color the graph in two dimensions and then show how
“there is not enough room” in three dimensions. Kernaghan’s proof (Kernaghan,
1994) with 20 vectors is fairly easy to present.

Unfortunately, there is a dearth of easy literature on this important theorem. A
good place to start looking is a nice article by Carsten Held in the Stanford Encyclo-
pedia of Philosophy.

E.4.5 Schrodinger’s Cat

This is a thought experiment that shows that the quantum weirdness of the micro-
world can cross over into the macroworld. By looking at a fairly mischievous con-
traption where a cat is placed in a box with a radioactive particle that is in a su-
perposition of being “half-way” alive and “half-way” dead, the cat is placed in a
superposition of being “half-way” alive and dead.

A presentation should include the basic construction; some history of the
thought experiment; some variations of the ideas; a discussion of “Wigner’s Friend”;
and some possible answers to this puzzle. Do not harm any animals while making
your presentation!

There are many popular articles and books that one can start looking into, e.g.,
Herbert (1987) and Gribbin (1984).

E.5 ARCHITECTURE

E.5.1 Maxwell’s Demon, Landauer’s Principle, and the Physics
of Information

These are several ideas at the crossroads of information theory and statistical me-
chanics. Maxwell’s demon is a seeming paradox that shows that one can create en-
ergy with information. Landauer’s principle concerns itself with the relationship of
energy and erasing information. Both of these ideas are the starting point to a field
that is called the physics of information. The basic theme of this field is studying

365

366

Appendix E Selected Topics for Student Presentations

information from the physical point of view and studying physics from the informa-
tional point of view. One of their oft-quoted mottos is “It from bit,” i.e., the physical
world is created from information. David Deutsch has taken this idea a little further
and written a paper (available on the Web) titled “It from qubit.”

A presentation can be historical. Go through the major players in this story and
the advances they made.

There are several papers by Charles H. Bennett and Rolf Landauer freely avail-
able on the Web, e.g., Bennett (1988) and Landauer (1991). David Deutsch’s “It
from qubit” is available. There is also an excellent book titled Grammatical Man:
Information, Entropy, Language and Life by Jeremy Campbell (1982). It is a popu-
lar history of information theory. Definitely worth reading!

E.5.2 Classical Reversible Computation

With the ideas about energy use and losing information, several researchers went
on to develop machines that are reversible and theoretically do not use energy.

A presentation can show some basic circuits; some reversible algorithms; and a
discussion of the actual physical implementations of reversible computations and
some of the problems they had.

There are many popular articles that are good places to start. See also Bennett’s
history of reversible computation (Bennett, 1988).

E.5.3 More Quantum Gates and Universal Quantum Gates

In the text we talked about several different quantum gates (Toffoli, controlled-
NOT, Pauli, etc.). There are, however, many others.

A well-rounded presentation should include a list of new quantum gates, as well
as their actions. For one-qubit gates, the geometry of their action on the Bloch
sphere should be articulated (a large children’s ball and a magic marker is a must
for this presentation!).

There are also many other results concerning which sets of gates form universal
sets. Here, you should identify one or two universal sets and explicitly show how
familiar gates can be obtained from them. For instance, how can you get a pair of
qubits maximally entangled from your chosen universal set?

The best place to begin is Nielsen and Chuang (2000).

E.6 ALGORITHMS

E.6.1 Probabilistic Algorithms

Some of the algorithms given in our text have a probabilistic flavor to them. Many
students might be unfamiliar with this programming paradigm. It turns out that for
certain problems if one does some clever guessing, there are ways of solving algo-
rithmic problems.

A presentation should contain a few different algorithms; what they solve; what
is a classic deterministic algorithm to solve the same problem; a comparison of com-
plexity issues. A few computer simulations are easy.

Appendix E Selected Topics for Student Presentations

A nice place to start looking for such algorithms are in Chapter 5 of Corman
et al. (2001). There is also a more theoretical discussion in Chapter 10 of Sipser
(2005).

E.6.2 Hidden Subgroup Problem

All the algorithms presented in this text, besides Grover’s algorithm, can be stated
as examples of a single computational problem. Some familiarity with basic group
theory is necessary for the statement of this problem.

Definition E.6.1 (The Hidden Subgroup Problem). Given a group G and a set func-
tion f: G —> S such that we are assured that there exists a subgroup H C G such
that f factors through the quotient G/ H, i.e.,

f
G S (E.1)

G/H
or in other words, that f is constant on different cosets of G, the goal is to find H.

Notice that this is a computational problem and not really a mathematical prob-
lem. Mathematically, H is simply f~'(f(e)).

A presentation should include a statement and an explanation of the problem;
how each of the algorithms in Chapter 6 (besides Grover’s) can be seen as an in-
stance of the problem; methods used to solve the general problem.

A good place to begin is Nielsen and Chuang (2000) and Hirvensalo (2001).

E.6.3 Classical Factoring Algorithms

Shor’s algorithm is the first algorithm that can factor numbers in polynomial time.
However, there are classical algorithms that factor large numbers. One of the algo-
rithms is Pollard’s rho heuristic. There are several others.

The presentation should have a nice statement of the problem; some discussion
of the mathematical preliminaries necessary to understand the algorithm; the al-
gorithms themselves; and the expected running time of the algorithm. One should
also discuss how large are the numbers that can successfully be factored by such an
algorithm. A computer implementation would be nice.

A nice place to start looking for material is Section 31.9 of Corman et al.
(2001).

E.6.4 Fourier Transforms

In the text, we mentioned the Fourier transform with its use in Shor’s algorithm.
There are, however, many other uses for the Fourier transform in computer science.

367

368

Appendix E Selected Topics for Student Presentations

They are used for multiplying numbers more efficiently; they are used to find pat-
terns; and many other tasks.

A presentation should go through different versions of the Fourier transform
such as the discrete Fourier transform, the fast Fourier transform, the quantum
Fourier transform. A discussion of complexity issues is also important. Mention al-
gorithms that use Fourier transforms. A computer simulation of one or more algo-
rithms is not hard.

A few good places to start looking are Chapter 7 of Baase (1988), Chapter 30
of Corman et al. (2001), or Chapter 2 of Dasgupta, Papadimitriou, and Vazirani
(2006).

E.7 PROGRAMMING LANGUAGES

E.7.1 SQRAM: A Full-Fledged Quantum Assembler

As we wrote in Chapter 7, our g-assembler is just a toy language to introduce the
basic concepts of g-programming. There is, however, at least one attempt to de-
scribe a concrete full-fledged quantum assembler that would run on a special type
of QRAM, the so-called sequential QRAM, or SQRAM.

After carefully reading Nagarajan, Papanikolaou, and Williams (2005), you
should present the SQRAM model in detail, as well as the language it supports.
Perhaps you could write a few simple programs for illustration purposes, and de-
scribe how the SQRAM machine executes them.

Can you think of additional desirable features?

E.7.2 QCL and Q: A Comparison

The languages by Omer and Bettelli are two successful attempts to design an imper-
ative quantum language. They share a number of similarities, but also some differ-
ence in the basic design philosophy.

Your presentations should clearly describe the basic features of the two propos-
als, and make explicit their intent.

The main references are Omer (2000) and Bettelli, Calarco, and Serafini (2001).
In an interview in Riidiger (2007), Omer and Bettelli have presented their views on
designing a quantum programming language.

E.7.3 Functional Quantum Programming: QML

As we mentioned in passing in Section 7.3, quite recently there was a new proposal
of a quantum functional language, known as QML, which attempts to provide quan-
tum control constructs. Try to present its syntax and discuss its quantum control
features, particularly the “quantum if.” Do these constructs qualify for quantum
control?

This presentation should be undertaken by students who have had some previ-
ous exposure to functional programming, and possibly to Haskell.

There is an entire Web site dedicated to this language, where you can find all
necessary references (and more): http://sneezy.cs.nott.ac.uk/QML.

http://sneezy.cs.nott.ac.uk/QML

Appendix E Selected Topics for Student Presentations

E.8 THEORETICAL COMPUTER SCIENCE

E.8.1 Primality Testing

Primality testing is concerned with telling if a given positive integer is a prime num-
ber or a composite number. With the knowledge of all the complexity classes men-
tioned in Sections 8.1 and 8.2, it is interesting to look at one problem and see how,
over the past several decades, progress has been made in solving this problem. Al-
though this problem is related to the factoring problem, it should not be confused
with it. Obviously if a number is prime, there will not be any nontrivial factors.
However, primality testing is a decision problem and factoring is a search problem.

A presentation should include some early results of primality testing, i.e., that it
is in coNP (obvious) and NP (Pratt certificates) and then at least state some of the
algorithms that show the problem is in the probabilistic polynomial time complexity
classes. A presentation should conclude with the recent result that PRIMES is, in
fact, in P.

Some early results are shown in Corman et al. (2001). There is a nice discussion
of probabilistic complexity classes and primality testing in Papadimitriou (1994) and
Sipser (2005). The result that PRIMES is in P is in Agrawal, Kayal, and Saxena
(2004).

E.8.2 Quantum Finite Automata

One of the simplest types of computing machines is finite automaton. These are
simple (virtual) devices that can recognize regular languages. Just as there is a gen-
eralization of a classical Turing machine to a quantum Turing machine, so too, there
is a generalization of the notion of a classical finite automaton to a quantum finite
automaton (QFA).

A presentation should include a clear definition of a QFA; a discussion of the
different types of QFAs; what type of languages they recognize; their relationships
with quantum Turing machines, quantum pushdown automata, and classical two-
way finite automata.

Information for such a presentation will be mostly found in research articles
easily found on xxx.lanl.gov.

E.8.3 QUANTUM ORACLE COMPUTATIONS

One of the more advanced topics in theoretical computer science is oracle compu-
tation; that is, the study of one type of computation “relative to” another. The extra
knowledge given by an oracle changes the basic facts about complexity classes. For
a given complexity class C and an oracle A, one constructs the complexity class C4.
If A is a general member of a complexity class A, then we can discuss the complexity
class CA. These new complexity classes are helpful in discussing the relative strength
of complexity classes.

A presentation should start with some classical results of oracle computation.
For example, there exists sets A and B such that

PA=NPA and PP+ NP, (E2)

369

370

Appendix E Selected Topics for Student Presentations

and move on to define what does it mean for a quantum Turing machine to have
an oracle. Move on to list and perhaps prove some of the results. Explain what a
random oracle is and why they are important.

A good place to start is the survey papers Cleve (1999); Fortnow (2003); Vazirani
(2002).

E.9 CRYPTOGRAPHY

E.9.1 RSA

One of the earliest public key cryptographic protocols is RSA. This protocol is used
throughout the World Wide Web and is the current standard on public key cryp-
tographic systems. RSA uses the fact that multiplication is computationally “easy”
and factoring is computationally “hard.”

The presentation should include a statement what the RSA protocol does; the
mathematical preliminaries necessary to understand the protocol; how the protocol
works; how the protocol would be destroyed if an efficient polynomial algorithm for
factoring was found; and the present way it is implemented. A computer simulation
is both easy and nice.

Many algorithms textbooks and discrete mathematics textbooks have chapters
on the RSA protocol.

E.9.2 Quantum Authentication

How can one be sure that the message just received was indeed sent by the one who
claims it? As it turns out, quantum cryptography can help. Again, just like in other
areas, the magic of entanglement plays a major role.

An interesting paper by D. Richard Kuhn of NIST (Kuhn, 2003) can be used,
both as a baseline and for the good references to related work.

E.10 INFORMATION THEORY

E.10.1 Quantum Games

Quantum games is a new area of research that straddles between game theory and
quantum computing. It was started by David Meyer in 1999 as a coin flip game
between Captain Picard of Enterprise Starship and Q, his “quantum opponent.”
The catch is that a qubit is used as the quantum coin. Whereas Captain Picard is
allowed only to apply classical flips, Q has a full range of quantum strategies at his
disposal. Q always wins.

For the hands-on reader, this presentation could also be an opportunity to
write a piece of quantum code. How about implementing a simulator of Meyer’s
game?

You can begin by reading the enjoyable Physics World online article: Lee and
Johnson (2002). At the end, you will find a number of references to get further
along.

Appendix E Selected Topics for Student Presentations

E.10.2 Quantum Entropy of Composite Systems

In Chapter 10, we have seen how quantum entropy measures the amount of order
of a given quantum system. Suppose now you are looking at a composite quantum
system S. There is a way to define the entropies of the subsystems if the entropy of
S is known. They are called residual entropies. The interesting thing is that, unlike
the classical case, the entropy of S can be smaller than the sum of the entropies
of its parts. This is because of entanglement, a new form of order of the quantum
world.

Your presentation should clearly articulate the notion of residual entropy and
show an example of the above.

A good reference is the “Notes on quantum information theory” by Sam
Lomonaco (1996). (Caveat: The level of math sophistication is a bit higher than
the one of Chapter 10. This is a good presentation for a math-oriented class).

E.10.3 Quantum Error-Correcting Codes

The last section of Chapter 10 was just meant to whet your appetite. There is much
more on the topic of quantum error-correction and error-detection, and thus a nice
opportunity for a great presentation.

Start with the survey paper by Knill et al. (2002). Although the tone of the paper
is rather informal, it is packed with good stuff. A suggestion would be to review the
first three sections, and go on to Section 6, where techniques for constructing codes
are presented, in particular stabilizer codes.

E.11 HARDWARE

E.11.1 Decoherence and the Emergence of the Classical World

In the first section we have introduced decoherence as a formidable opponent in
our quest for quantum hardware. Decoherence is part of life, and it also has a bright
side: it is perhaps the key to the emergence of the macroscopic physical world.

For this presentation, you can present the excellent survey paper (Zurek, 2003).
A Google search with key words decoherence + classical world will provide other
useful references (in particular, an excellent site is www.decoherence.info).

E.11.2 A Comparison of Extant Approaches to Quantum Hardware

In Chapter 11, we have briefly showcased a few approaches for quantum hardware.
If this topic captivates you, it is worth preparing a presentation comparing all the
known proposals to date. As we mentioned at the end of Section 11.3, NIST has a
major ongoing effort toward implementing quantum devices, and it has made avail-
able a Quantum Roadmap (http:/qist.lanl.gov/qcomp_map.shtml), divided into sev-
eral sections, each dedicated to a specific proposal. As our introduction of nuclear
magnetic resonance was sketchy at best, perhaps it could be your starting point (you
should highlight its strengths and weaknesses).

371

http://www.decoherence.info
http://qist.lanl.gov/qcompmap.shtml

372

Appendix E Selected Topics for Student Presentations

E.11.3 Current Implementations of Quantum Cryptography

In Chapter 9 we familiarized ourselves with a few quantum cryptography protocols.
But, where are we in real life? As it turns out, a number of experiments have been
carried out. In fact, currently there are a few commercially available quantum cryp-
tographic communicating devices.

In this presentation, you should showcase a few milestones and the roadmap for
the future of quantum cryptography.

Where to start? A good entry point is the Quantum Cryptography Roadmap,
available at the Los Alamos Laboratories’, Web site: http://qist.lanl.gov/qcrypt-
map.shtml. It is subdivided in several sections, each addressing a core method of
QKD.

http://qist.lanl.gov/qcrypt_map.shtml
http://qist.lanl.gov/qcrypt_map.shtml

Bibliography

L.M. Adleman, J. DeMarrais, and M.-D. A. Huang. Quantum computability. STAM
Journal on Computing, 26(5):1524-1540, 1997.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES in P. Annals of Mathematics 2,
160(2):781-793, 2004. Available at http://www.cse.iitk.ac.in/users/manindra/.

D. Aharonov. Quantum computation. December 1998. Available at www.arxiv.
org/quant-ph/9812037.

Y. Aharonov and D. Rohrlich. Quantum Paradoxes: Quantum Theory for the
Perplexed. Wiley-VCH, Weinheim, 2005.

R.B. Ash. Information Theory. Dover Publications, New York, 1990.

S. Baase. Computer Algorithms: Introduction to Design and Analysis, Second Edi-
tion. Addison-Wesley, Reading, Mass, 1988.

J. Bak and D.J. Newman. Complex Analysis, Second Edition. Springer, New York,
1996.

A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.W. Shor,
T. Sleator, J.A. Smolin, and H. Weinfurter. Elementary gates for quantum com-
putation. Physical Review A, 52(5):3457-3467, 1995.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa. Conditional quantum dynamics
and logic gates. Physical Review Letters, 74(20):4083-4086, 1995.

H. Bass, H. Cartan, P. Freyd, A. Heller, and S. MacLane. Samuel Eilenberg (1913-
1998). Notices of American Mathematical Society, 45(10):1344-1352, 1998.

J.S. Bell. On the Einstein—Podolsky—Rosen paradox. Physics, 1:195-200, 1964.

J.S. Bell. Speakable and Unspeakable in Quantum Mechanics. Cambridge University
Press, Cambridge, UK, 1987.

P. Benioff. Quantum mechanical models of Turing machines that dissipate no en-
ergy. Physical Review Letters, 48(23):1581-1585, 1982.

373

http://www.cse.iitk.ac.in/users/manindra/
http://www.arxiv.org/quant-ph/9812037
http://www.arxiv.org/quant-ph/9812037

374 Bibliography

C.H. Bennett. Notes on the history of reversible computation. /IBM Journal of Re-
search and Development, 32(1):16-23, 1988.

C.H. Bennett. Quantum cryptography using any two nonorthogonal states. Physical
Review Letters, 68:3121, 1992.

C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weak-
nesses of quantum computing. SIAM Journal on Computing, 26(5):1510-1523,
1997.

C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Comput-
ers Systems and Signal Processing, pages 175-179, Bangalore, India, December
1984.

C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Woot-
ters. Teleporting an unknown quantum state via dual classical and Einstein—
Podolsky—-Rosen channels. Physical Review Letters, 70(13):1895-1899, March
1993.

K.K. Berggren. Quantum computing with superconductors. Proceedings of the
IEEE, 92(10), October 2004.

E. Bernstein and U. Vazirani. Quantum complexity theory. In STOC °93: Proceed-
ings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
pages 11-20, ACM, New York, 1993.

E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Com-
puting, 26(5):1411-1473, 1997.

S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum pro-
gramming. CoRR, 2001. Available at http://arxiv.org/abs/cs.PL/0103009.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger.
Experimental quantum teleportation. Nature, 390:575-579, 1997.

G. Brassard. Cryptology column—quantum cryptography. A bibliography. SIGACT
News, 24(3):16-20, 1993.

G. Brassard and C. Crépeau. Cryptology column — 25 years of quantum cryptogra-
phy. SIGACT News, 27(3):13-24, 1993.

A.R. Calderbank and P.W. Shor. Good quantum error-correcting codes exist. Phys-
ical Review A, 54(2):1098-1105, August 1996.

J. Campbell. Grammatical Man: Information, Entropy, Language and Life. Simon
& Schuster, New York, July 1982.

M. Chester. Primer of Quantum Mechanics. Dover Publications, Mineola, N.Y.,
2003.

I.L. Chuang, N. Gershenfeld, and M. Kubinec. Experimental implementation of fast
quantum searching. Physical Review Letters, 80 (15):3408-3411, 1998.

L.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, and S. Lloyd. Experimen-
tal realization of a quantum algorithm. Nature, 393:143-146, 1998.

http://arxiv.org/abs/cs.PL/0103009

Bibliography 375

J.I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical
Review Letters, 74:4091-4094, 1995.

J. Cirasella. Classical and quantum algorithms for finding cycles. 2006. Available at
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2006-06.text.pdf.

R. Cleve. An introduction to quantum complexity theory. Available at http://arxiv.
org/abs/quant-ph/9906111, 1999.

G.P. Collins. Quantum bug: Qubits might spontaneously decay in seconds. Anarticle
from Scientific American available at http://www.sciam.com.

T.H. Corman, C.E. Leiserson, R.E. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. The MIT Press, Cambridge, Mass., 2001.

M.J. Crowe. A History of Vector Analysis: The Evolution of the Idea of a Vectorial
System. Dover Publications, Mineola, N.Y., 1994.

S. Dasgupta, C.H. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill
Science/Engineering/Math, New York, 2006.

M.D. Davis, E.J. Weyuker, and R. Sigal. Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science. Morgan Kaufmann, Boston,
1994.

D. Deutsch. Quantum theory, the Church-Turing principle and the univer-
sal quantum computer. Proceedings of the Royal Society of London, Series
A, 400(1818):97-117, 1985. Available at http://www.qubit.org/oldsite/resource/
deutsch85.pdf.

D. Deutsch. Quantum computational networks. Proceedings of the Royal Society of
London, Series A, 425(1868):73-90, 1989.

D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Pro-
ceedings of the Royal Society of London, Series A, 439:553-558, October 1992.

D. Dieks. Comunicating by EPR devices. Physical Letters A, 92(6):271-272, 1982.

P.AM. Dirac. The Principles of Quantum Mechanics (The International Series of
Monographs on Physics). Oxford University Press, Oxford, UK, 1982.

D.P. DiVincenzo. The physical implementation of quantum computation. http://
arxiv.org/abs/quant-ph/0002077.

D.P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical
Review A, 51(2):1015-1022, 1995.

G. Egan. Schild’s Ladder. Harper Collins Publishers, New York, 2002.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of
physical reality be considered complete? Physical Review, 47:777-780, May 1935.

A K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review
Letters, 67:661-663, 1991.

H. Eves. An Introduction to the History of Numbers, Fourth Edition. Holt, Rinehart
and Winston, New York, 1976.

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2006-06.text.pdf
http://arxiv.org/abs/quant-ph/9906111, 1999
http://www.sciam.com
http://www.qubit.org/oldsite/resource/deutsch85.pdf
http://arxiv.org/abs/quant-ph/0002077
http://arxiv.org/abs/quant-ph/0002077
http://www.qubit.org/oldsite/resource/deutsch85.pdf
http://arxiv.org/abs/quant-ph/9906111, 1999

376 Bibliography

R.P. Feynman. Feynman Lectures on Physics (3 Volume Set). Addison-Wesley,
Boston, 1963.

R.P. Feynman. Simulating physics with computers. International Journal of Theoret-
ical Physics,21(6/7):467-488, 1982.

L. Fortnow. One complexity theorist’s view of quantum computing. Theoretical
Computer Science, 292(3):597-610, 2003.

G. Gamow. Thirty Years That Shook Physics: The Story of Quantum Theory. Dover
Publications, Mineda, N.Y., 1985.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman & Co., New York, 1979.

S.J. Gay. Quantum programming languages: Survey and bibliography. Bulletin
of the EATCS, 86:176-196, 2005. Available at http:/dblp.uni-trier.de/db/
journals/eatcs/eatcs86.html#Gay05.

J. Gilbert and L. Gilbert. Linear Algebra and Matrix Theory, Second Edition. Thom-
son, Brooks/Cole, San Diego, 2004.

D.T. Gillespie. A Quantum Mechanics Primer: An Introduction to the Formal The-
ory of Non-relativistic Quantum Mechanics. John Wiley & Sons, New York, 1974.

J. Grattage and T. Altenkirch. QML: Quantum data and control. February 2005.
Available at http://www.cs.nott.ac.uk/ txa/publ/jqpl.pdf.

J. Gribbin. In Search of Schrodinger’s Cat: Quantum Physics and Reality. Bantam,
New York, 1984.

R.P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction,
Fifth Edition. Addison-Wesley, Boston, 2003.

L.K. Grover. A fast quantum mechanical algorithm for database search. In STOC
’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pages 212-219, ACM, New York, 1996.

L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters, 79(2):325-328, 1997.

K. Hannabuss. An Introduction to Quantum Theory. Oxford University Press, New
York, 1997.

N. Herbert. Quantum Reality: Beyond the New Physics. Anchor, Garden City, N.Y.,
1987.

M. Hirvensalo. Quantum Computing. Springer, New York, 2001.

M.H. Holzscheiter. Ion-trap quantum computation. Los Alamos Science. Available
at http:/library.lanl.gov/cgi-bin/getfile 727-20.pdf.

R. Jozsa and B. Schumacher. A new proof of the quantum noiseless coding theorem.
Journal of Modern Optics, 41(12):2343-2349, 1994.

M. Kernaghan. Bell-Kochen-Specker theorem for 20 vectors. Journal of Physics A,
27:1.829-1.830, 1994.

http://dblp.uni-trier.de/db/journals/eatcs/eatcs86.html#Gay05
http://www.cs.nott.ac.uk/txa/publ/jqpl.pdf
http://library.lanl.gov/cgi-bin/getfile?27-20.pdf
http://dblp.uni-trier.de/db/journals/eatcs/eatcs86.html#Gay05

Bibliography

A.Yu. Kitaev, A.H. Shen, and M.N. Vyalyi. Classical and Quantum Computation
(Graduate Studies in Mathematics). American Mathematical Society, 2002.

E. Knill. Conventions for quantum pseudocode. Los Alamos National Laboratory
Technical Report, LAUR-96-2724, 1996.

E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, and W.H. Zurek.
Introduction to quantum error correction. 2002. Available at http://arxiv.org/
abs/quant-ph/0207170.

N. Koblitz. A Course in Number Theory and Cryptography, Second Edition.
Springer, New York, 1994.

D.R. Kuhn. A hybrid authentication protocol using quantum entanglement and
symmetric cryptography. 2003. Available at http://arxiv.org/abs/quant-
ph/0301150.

R. Landauer. Information is physical. Physics Today, 44:23-29, 1991.
S. Lang. Introduction to Linear Algebra, Second Edition. Springer, New York, 1986.
S. Lang. Algebra, Third Edition. Addison-Wesley, Reading, Mass., 1993.

C.F. Lee and N.F. Johnson. Let the quantum games begin. Physics World, 2002.
Available at http://physicsworld.com/cws/article/print/9995.

S. Lloyd. Almost any quantum logic gate is universal. Physical Review Letters, 75
(2):346-349, 1995.

S.J. Lomonaco. Notes on quantum information theory. 1996. Available at
http://www.cs.umbc.edu/ lomonaco/lecturenotes/Qinfo.pdf.

S.J. Lomonaco Jr. A talk on quantum cryptography, or how Alice outwits Eve, 2001.
In Quantum Computation: A Grand Mathematical Challenge for the 21st Cen-
tury Ed by Somuel J. Lomonaco.

J.L. Martin. Basic Quantum Mechanics (Oxford Physics Series). Oxford University
Press, New York, 1982.

B. Mazur. Imagining Numbers (Particularly the Square Root of Minus Fifteen). Far-
rar, Straus and Giroux, New York, 2002.

R. Nagarajan, N. Papanikolaou, and D. Williams. Simulating and compiling
code for the sequential quantum random access machine, 2005. Available at
http://www.dcs.warwick.ac.uk/ nikos/downloads/newpaper.pdf.

P.J. Nahin. An Imaginary Tale: The Story of i (The Square Root of Minus One).
Princeton University Press, Princeton, N.J., 1998.

T. Needham. Visual Complex Analysis. Oxford University Press, New York, 1999.

W.K. Nicholson. Linear Algebra with Applications, Third Edition. PWS Publishing
Company, Boston, 1994.

M.A. Nielsen. Quantum entropy. A PowerPoint presentation available at http://
michaelnielsen.org/blog/qicss/entropy.ppt.

M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK, 2000.

377

http://arxiv.org/abs/quant-ph/0207170
http://arxiv.org/abs/quant-ph/0301150
http://arxiv.org/abs/quant-ph/0301150
http://physicsworld.com/cws/article/print/9995
http://www.cs.umbc.edu/lomonaco/lecturenotes/Qinfo.pdf
http://www.dcs.warwick.ac.uk/nikos/downloads/newpaper.pdf.
http://michaelnielsen.org/blog/qicss/entropy.ppt
http://michaelnielsen.org/blog/qicss/entropy.ppt
http://arxiv.org/abs/quant-ph/0207170

378 Bibliography

B Omer. Quantum programming in qcl. 2000. Available at http:/tph.tuwien.
ac.at/ oemer/doc/quprog.pdf.

M. O’Nan. Linear Algebra, Second Edition. Harcourt Brace Jovanovich, Inc., New
York, 1976.

H.R. Pagels. The Cosmic Code: Quantum Physics as the Language of Nature. Simon
& Schuster, New York, 1982.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mass.,
1994.

R.C. Penney. Linear Algebra, Ideas and Applications. John Wiley & Sons, New
York, 1998.

R. Penrose. Shadows of the Mind: A Search for the Missing Science of Consciousness.
Oxford University Press, Oxford, UK, 1994.

R. Penrose. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws
of Physics (Popular Science). Oxford University Press, Oxford, UK, 1999.

R. Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe.
Knopf, New York, 2005.

13

I. Pitowsky. George Boole’s “conditions of possible experience” and the quantum
puzzle. The British Journal for the Philosophy of Science, 45(1):95-125, 1994.

T.B. Pittman, B.C. Jacobs, and J.D. Franson. Quantum computing using lin-
ear optics. Johns Hopkins APL Technical Digest, 25(2), 2004. Available at
http://arxiv.org/ftp/quant-ph/papers/0406/0406192.pdf.

J. Polkinghorne. Quantum Theory, A Very Short Introduction. Oxford University
Press, Oxford, UK, 2002.

R. Raussendorf and H.J. Briegel. A one-way quantum computer. Physical Review
Letters, 86(22), May 2001, 5188-5191.

R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120—
126, 1978.

P. Rodgers. The double-slit experiment. Physics World, 2002. Available at http://
physicsworld.com/cws/article/print/9745.

K.H. Rosen. Discrete Mathematics and Its Applications, Fifth Edition. McGraw-Hill,
Boston, 2003.

K.A. Ross and C.R.B. Wright. Discrete Mathematics, Fifth Edition. Prentice-Hall,
Upper Saddle River, N.J., 2003.

R. Riidiger. Quantum programming languages: An introductory overview. The
Computer Journal, 50(2):134-150, 2007. Available at http://comjnl.oxford-
journals.org/cgi/content/abstract/50/2/134.

J.J. Sakurai. Modern Quantum Mechanics, Revised edition, Addison-Wesley Pub-
lishing Company, Reading, Mass., 1994.

http://tph.tuwien.ac.at/ oemer/doc/quprog.pdf.
http://arxiv.org/ftp/quant-ph/papers/0406/0406192.pdf
http://physicsworld.com/cws/article/print/9745
http://physicsworld.com/cws/article/print/9745
http://comjnl.oxford-journals.org/cgi/content/abstract/50/2/134
http://comjnl.oxford-journals.org/cgi/content/abstract/50/2/134
http://tph.tuwien.ac.at/ oemer/doc/quprog.pdf.

Bibliography

K. Sayood. Introduction to Data Compression, Third Edition. Morgan Kaufmann,
Amsterdam, 2005.

B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition. John Wiley, & Sons, New York, 1995.

B. Schumacher. Quantum coding. Physical Review A, 51(4):2738-2747, 1995.

H. Schwerdtfeger. Geometry of Complex Numbers. Dover Publications, Mineola,
N.Y., 1980.

P. Selinger. A brief survey of quantum programming languages. In Y. Kameyama
and P.J. Stuckey, editors, Functional and Logic Programming, 7th International
Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, volume 2998 of Lecture
Notes in Computer Science, pages 1-6. Springer, New York, 2004a.

P. Selinger. Towards a quantum programming language. Mathematical Structures
in Computer Science, 14(4):527-586, 2004b. Available at http://www.mathstat.
dal.ca/ selinger/papers/qpl.pdf.

C.E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423, 623-656, 1948.

P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In S. Goldwasser, editor, Proceedings of the 35th Annual Symposium on the
Foundations of Computer Science, pages 124-134, . IEEE Computer Society, Los
Alamitos, Calif., 1994.

P.W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys-
ical Review A, 52(4):R2493-R2496, 1995.

P.W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal Computing, 26(5):1484-1509,
1997.

P.W. Shor. Introduction to quantum algorithms. In Quantum Computation: A
Grand Mathematical Challenge for the Twenty-First Century and the Millennium,
(Washington, DC, 2000), volume 58 of Proceedings of the Symposium in Applied
Mathematics, pages 143-159. American Mathematical Society, Providence, R.I.,
2002.

P.W. Shor. Why haven’t more quantum algorithms been found? Journal of the
ACM, 50(1):87-90, 2003.

R.A. Silverman. Introductory Complex Analysis. Dover Publications, Mineola,
N.Y., 1984.

D.R. Simon. On the power of quantum computation. In Proceedings of the 35th An-
nual Symposium on Foundations of Computer Science, pages 116-123, Institute
of Electrical and Electronic Engineers Computer Society Press, Los Alamitos,
Calif., 1994.

D.R. Simon. On the power of quantum computation. SIAM Journal Computing,
26(5):1474-1483, 1997.

379

http://www.mathstat.dal.ca/ selinger/papers/qpl.pdf.
http://www.mathstat.dal.ca/ selinger/papers/qpl.pdf.

380 Bibliography

M. Sipser. Introduction to the Theory of Computation, Second Edition. Thomson
Course Technology, Boston, 2005.

A .M. Steane. The ion trap quantum information processor. Applied Physics B, 64,
623, 1997.

A. Sudbery. Quantum Mechanics and the Particles of Nature: An Outline for Math-
ematicians. Cambridge University Press, Cambridge, UK, 1986.

D.H. Towne. Wave Phenomena. Dover Publications, Mineola, N.Y., 1989.

L.M.K. Vandersypen, G. Breyta, M. Steffen, C.S. Yannoni, M.H. Sherwood, and I.L.
Chuang. Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature, 414(6866):883-887, 2001.

U.V. Vazirani. A survey of qunatum complexity theory. In S. Lomonaco, Jr., editor,
Quantum Computation: A Grand Mathematical Challenge for the Twenty-First
Century and the Millennium, pages 193-217, 2002.

J. Watrous. On quantum and classical space-bounded processes with algebraic tran-
sition amplitudes. In IEEE Symposium on Foundations of Computer Science,
pages 341-351, 1999.

R.L. White. Basic Quantum Mechanics. McGraw-Hill, New York, 1966.
S. Wiesner. Conjugate coding. SIGACT News, 15(1):78-88, 1983.

W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802-803, October 1982.

A.C-C. Yao. Quantum circuit complexity. In Proceedings of 34th IEEE Symposium
on Foundations of Computer Science, pages 352-361, 1993.

S. Zachos. Robustness of probabilistic computational complexity classes under def-
initional perturbations. Information and Control, 54(3):143-154, 1982.

P.A. Zizzi. Emergent consciousness: From the early universe to our mind. Available
at http://arxiv.org/abs/gr-qc/0007006.

W.H. Zurek. Decoherence and the transition from quantum to classical — revisited.
June 2003. Available at http://arxiv.org/abs/quant-ph/0306072.

http://arxiv.org/abs/gr-qc/0007006
http://arxiv.org/abs/quant-ph/0306072

Index

Aaronson, Scott, 261
action, 42, 44, 61,72
addition
of vectors, 30
additive inverse
of a vector, 32
Adleman, Leonard, 266, 322
adjoint, 39
Aharonov, Dorit, 219
Aharonov, Yakhir, 112
algebraically complete, 14
algorithm
Deutsch-Jozsa, 4, 170, 179-187, 196, 218, 259,
321,322
Deutsch’s, 4, 170-180, 218, 230, 233
Euclid’s, 217
Grover’s search, 4, 170, 195-204, 218, 235, 259,
260, 322, 367
Huffman’s, 298, 304
Lempel-Ziv lossless compression, 296
modular-exponentiation, 218
Shor’s factoring, 4, 170, 204-219, 230, 259, 315,
322,323, 361, 367
Simon’s periodicity, 4, 170, 187-196, 209, 218,
259,322
amplification lemma, 250, 257
analytic functions, 28
Argand plane, see complex plane
arXiv, 358, 359
associativity
of vector addition, 31
authentication, 267

B92 protocol, 273-275
Barenco, Adriano, 321
Barrow, John D., 239
basis, 47-53, 68, 183
canonical, 47-49, 59
orthogonal, 57
orthonormal, 57, 59, 64, 295
standard, see basis, canonical
BB84 protocol, 268-273, 275-277, 283, 323
Bell basis, 278-283

Bell, John, 277,278, 364
Bell’s inequality, 277, 364
Benioff, Paul, 320
Bennett, Charles, 153, 268, 273, 323, 324, 366
Berggren, Karl, 317
Bernstein, Ethan, 321, 322
Berra, Yogi, 316
Bettelli, Stefano, 222
bijective, 15
bilinear map, 68
billiard ball

quantum, 91

stochastic, 84, 87, 91, 92
bit, 138
Bloch sphere, 161
Bohm, David, 364
Bohr, Niels, 316, 364
Bombelli, Rafael, 28
Boole, George, 277
Bouwmeester, Dik, 324
BPP, 249-251, 258
BQP, 257, 258
bra, 112
Brassard, Gilles, 268, 323

Caesar’s protocol, 263
Calderbank, A.R., 324
Cardano, Gerolamo, 28
Cartesian product

of graphs, 99, 100

of sets, 45

of vector spaces, 45, 49, 66, 68
Cartesian representation, 18, 352
Cauchy sequence, 59
Chuang, Isaac L., xii, 315, 322
ciphertext, 262
Cirac, J.I., 311
Cirasella, Jill, xii, xiii, xvi, 319, 357
Collins, Graham P., 310
complex algebra, 42
complex analysis, 27
complex conjugation, 14, 39
complex plane, 16, 17,21, 362

381

382 Index

complex subspace, 42, 43 Fourier transform, 212, 367
complexity class, 243 discrete, 214, 368
configuration, 242, 247, 252-255 fast, 368
coNP, 245,246, 251, 258, 369 quantum, 215, 368
coP, 245, 246, 251, 258 Frost, Robert, 262
coRP, 249-251, 258 function
Crépeau, Claude, 323 balanced, 171-187, 321
Crow, Michael J., 363 constant, 171-187, 321
transition, 240, 246, 252
D-Wave Systems, 316 Fundamental theorem of algebra, 9
dagger, see adjoint
data compression, 295-302, 304 Galilei, Galileo, 29
lossless, 295 gate
lossy, 295 AND, 145, 147, 149-151, 155
De Broglie, Louis, 104 controlled-NOT, 153-155, 158, 165, 311, 313,
De Moivre’s formula, 25 355, 366
decoherence, 5, 303, 305-317, 324, 371 controlled-U, 164, 165
decryption, 262 Deutsch, 165
decryption key, 263 Fredkin, 157, 158, 165, 168
DeMorgan’s law, 150, 151 Hadamard, 158, 165
density operator, 288 identity, 151, 158
Deutsch, David, 169, 320, 321, 366 measurement, 159, 355
Dick, Philip K., 103 NAND, 146, 147, 156, 165
Dijkstra, E-W., 170 NOR, 147
dimension, 50-53, 183 NOT, 144, 145, 147, 149-151, 153, 155, 156, 158
Diogenes Laertius, vi OR, 146, 149, 150, 156
Dirac, P.A.M., 137 Pauli, 366
distance function, 57 quantum, 3, 158-169, 366
DiVincenzo, David P., 310, 317, 321 reversible, 151-158
division, 11 square root of NOT, 159
dot product, see inner product Toffoli, 154-156, 158, 165, 166, 168, 366
dynamics, 75, 79, 98 Gay, J., 234
Gershenfeld, Neil, 322
Egan, Greg, 316 Gibbs, Josia, 363
eigenbasis, 64, 301, 302 Godel, Kurt, 239
eigenspace, 62 Google, 354, 361
eigenvalue, 61-64, 354 Blog Search, 357
eigenvector, 61-62, 64, 354 News, 357
Eilenberg, Samuel, xv Scholar, 358, 359
Einstein, Albert, 2, 104, 282, 364 Grassmann, Hermann, 363
Ekert, Artur K., 275, 321 group
elliptic curves, 267 Abelian, 32, 34
encryption, 262 Grover, Lov, 196, 322
encryption key, 263
entanglement, 2, 4, 100, 103, 132-137, 144, 164, Hamilton, Sir William Rowan, 363
262,275-278, 282, 306, 364, 370 Hamiltonian, 132
entropy, 5, 307, 371 HAMILTONIAN GRAPH, 259
EPR paradox, 364 Heisenberg’s uncertainty principle, 3, 120, 124,
EPR protocol, 275-277 125
EQP, 258 Held, Carsten, 365
error-correcting, 302-310 Heller, Alex, xv
Euler’s formula, 24 Heraclitus of Ephesus, vi
Everett, Hugh, 364 Hilbert space, 60, 226, 311
expected value, 120 Huygens’ principle, 363
experiment Holzscheiter, M., 317
diffraction, 104 Huygens, Christiaan, 363
double-slit, 74, 93, 96, 102, 104, 105, 241, 256,
363 id Quantique, 316, 323
Elitzur—Vaidman bomb-tester, 363 infinite
probabilistic double-slit, 85 countably, 49
Stern—Gerlach, 110 uncountably, 49
exponential form, 25 inner product, 54, 65, 183
inner product space, 54, 60
Feynman, Richard, 96, 100, 102, 319, 320 complete, 60
field, 14, 183 instantaneous description, see configuration
Fine, Arthur, 364 interference, 89, 92-95, 105, 256

Fourier analysis, 1 intrusion detection, 267

inversion about the average, see inversion about
the mean
inversion about the mean, 198-204
ion trap, 311-314
isomorphism
of fields, 15
of graphs, 101
of matrices, 101
of vector spaces, 44, 50

Jeans, Sir James, 138
Jones, J.A., 315
Josephson junctions, 315
Jozsa, Richard, 321, 324
Julius Caesar, 263

Kernaghan, M., 365

ket, 106

Kirk, Captain James T., 283
Knill, Emanuel, 238, 371
Kochen-Specker theorem, 365
Kronecker delta function, 57, 336
Kryptonite, 262

Kubinec, Mark, 322

Kuhn, D. Richard, 370

Landauer principle, 151, 365
Landauer, Rolf, 151, 366
length (of a vector), see norm
linear combination, 45-47
linear map, 43

linear optics, 313-314
linearly dependent, 47
linearly independent, 46
Lloyd, Seth, 321

Lomonaco, Samuel J., 371
Luthor, Lex, 262

MagiQ Technologies, 316, 323
MathWorks, 351, 352
MATLAB, xii, xiii, xvi, 206, 260, 351-356
matrix
adjacency, 74, 97
Boolean adjacency, 76
change of basis, 51
controlled-NOT, 226
density, 302, 307
diagonal, 64, 354
doubly stochastic, 80, 83-85, 87
Hadamard, 52, 53, 173-356
hermitian, 62-64, 115-129
identity, 41, 226
invertible, 64
multiplication, 4042
Pauli, 158
phase shift, 226
symmetric, 62, 63, 90
transition, see matrix, change of basis
unitary, 64-66, 89-96, 129-132, 171-173, 180,
181, 186, 188, 196198, 200, 201, 214, 215, 217,
218, 336
Vandermonde, 213
Maxwell’s demon, 365
mean value, 126
measurement, 96, 115-129
Meyer, David, 370
Mobius transformation, 27, 362

Index

modulus, 13, 16
Monroe, C., 311
Mosca, M., 315

Musil, Robert, 7

Nagarajan, R., 225
negative
of a vector, 32
Nielsen, Michael A., xii, 304
NIST, 311, 315
NMR, 315-316, 371
No-cloning theorem, 166-169, 224, 268, 271,
278
nonlocality, 2
norm, 56, 65, 353
normalization, 140, 141, 160
normalized, 109
NP, 244-246, 251, 258, 369
NP-complete problem, 259
numbers
complex, 7-29, 361
tractably computable, 251, 252
imaginary, 9, 16
natural, 8
positive, 8
rational, 8
real, 8
tractably computable, 246, 252
whole, 8

observables, 129
Omer, Bernhard, 234
One-Time-Pad protocol, 265
operations

parallel, 148

sequential, 147
operator, 44

self-adjoint, 62, 64
oracle computation, 369
orthogonal, 57

P, 243-246, 250, 251, 258, 369
Papanikolaou, N., 225
parallelogram rule, 17

pdf, see probability distribution
Penrose, Sir Roger, 7,316
period (of a function), 188-195
phase, 19

phase change, 162

phase inversion, 197-204
phase shift, 356

photoelectric effect, 96, 104
plaintext, 262

pointwise, 44

polar representation, 18, 19, 352
polarization, 313

Pollard’s rho heuristic, 367
polynomials, 9, 26, 43

Pratt certificate, 369

primality testing, 369
probability distribution, 285
PSPACE, 245, 246, 251, 258
Pythagoras’ theorem, 16

QFC, 236
QRAM, 220-238, 256, 368
sequential, 368

383

384

Index

QSPACE, 258

Quack, xiii, xvi, 354-356

Quantiki, 357

quantum assembler, 222

quantum circuits, 222, 256

quantum data compression scheme, 299
quantum eraser, 363

quantum error-correction, 371
quantum error-detection, 371
quantum finite automata, 369
quantum games, 370

quantum hardware interface, 223, 224
quantum key exchange, 268-277
quantum machine language, 222
quantum register, 224

qubit, xiii, 3, 138, 139

qubyte, 143,225

Riidiger, R., 234
rational functions, 27
reduced Planck constant, 117
reflection

imaginary axis, 14

real axis, 14
representation of an operator, 44
Riemann sphere, 362
Rivest, Ronald, 266, 322
Rohde, Peter, xvi, 354
Rohit Parikh, xv
roots of unity, 25
RP, 249-251,258
RSA, 266, 322,323,361, 370

Saint Exupry, Antoine de, 305
SAT, 259

Savitch’s theorem, 245, 258
Sayood, Kahil, 304

scalar, 33

scalar multiplication, 33

scalar product, see inner product
Schrédinger equation, 131, 132
Schrodinger, Erwin, 363-365
Schrodinger’s cat, 365
Schumacher, Benjamin, 301, 324

Schumacher’s quantum coding theorem, 301,

304
Scopus, 358, 359
Selinger, Peter, 234, 236
Shamir, Adi, 266, 322
Shannon, Claude, 5, 284, 297, 304, 324
Shannon entropy, 284-302

Shannon’s noiseless channel coding theorem, 297,

301
Shor, Peter, 204, 219, 303, 322-324
Simon, Daniel R., 322
skew symmetric, 54
Smart Quantum, 323
snapshot, see configuration

Spectral theorem for self-adjoint operators, 64,

292
spin, 109, 141, 355
SQP, 315
stabilizer codes, 371
state
entangled, 135
entangled, 71
mixed, 307
pure, 306

separable, 71, 135
well-defined, 288, 306, 311
statistical mechanics, 2
Steane, Andrew M., 324
subfield, 14
subtraction, 11
Sudoku game, 316
Suetonius, 263
superconductor, 315
superposition, 2-4, 96, 97, 107, 256

Tartaglia, Niccol Fontana, 28
Taylor expansion, 24
Technorati, 357
teleportation, 5, 262, 277-283, 324
tensor product
of matrices, 71, 99-101, 150, 354
of vectors, 69, 98, 100
of vector spaces, 66-73, 102, 132-137
thesis
classical Church-Turing, 241
Cook-Karp, 243
strong Church-Turing, 251, 259
time symmetry, 82
trace, 55, 353
transporting, 167
transpose, 39
triangle inequality, 56, 57, 295
Turing, Alan, 239
Turing machine, 239, 260
deterministic, 239-244, 258
nondeterministic, 239, 243-246
probabilistic, 239, 246-253, 260
quantum, 5, 223, 239, 252-260, 320, 369, 370
well-formed, 255

unit circle, 24

unit sphere, 65

universal logical gates, 165
universal quantum gates, 165

Vazirani, Umesh, 321, 322
vectors, 16
vector space, 362
F, 183
75,183
complex, 29-73, 183, 254
real, 34, 183
Vernam cipher, see One-Time-Pad protocol
von Neumann entropy, 288, 302

Wang, Hao, 239

wave mechanics, 1, 363
Web of Science, 358, 359
Wiesner, Stephen, 323
Wigner’s friend, 365
Wikipedia, 358
Williams, D., 225
Wineland, D., 311

Yao, Andrew Chi-Chih, 321
Young, Thomas, 104, 105, 363
zero vector, 32

Zizzi, Paola, 316

Zoller, P., 311

ZPP, 250,251, 258

ZQP, 257,258

Zurek, Wojciech H., 317

	Cover
	Title
	Copyright
	Contents
	Preface
	1 Complex Numbers
	1.1 Basic Definitions
	1.2 The Algebra of Complex Numbers
	1.3 The Geometry of Complex Numbers

	2 Complex Vector Spaces
	2.1 C[sup(n)] as the Primary Example
	2.2 Definitions, Properties, and Examples
	2.3 Basis and Dimension
	2.4 Inner Products and Hilbert Spaces
	2.5 Eigenvalues and Eigenvectors
	2.6 Hermitian and Unitary Matrices
	2.7 Tensor Product of Vector Spaces

	3 The Leap from Classical to Quantum
	3.1 Classical Deterministic Systems
	3.2 Probabilistic Systems
	3.3 Quantum Systems
	3.4 Assembling Systems

	4 Basic Quantum Theory
	4.1 Quantum States
	4.2 Observables
	4.3 Measuring
	4.4 Dynamics
	4.5 Assembling Quantum Systems

	5 Architecture
	5.1 Bits and Qubits
	5.2 Classical Gates
	5.3 Reversible Gates
	5.4 Quantum Gates

	6 Algorithms
	6.1 Deutsch's Algorithm
	6.2 The Deutsch–Jozsa Algorithm
	6.3 Simon's Periodicity Algorithm
	6.4 Grover's Search Algorithm
	6.5 Shor's Factoring Algorithm

	7 Programming Languages
	7.1 Programming in a Quantum World
	7.2 Quantum Assembly Programming
	7.3 Toward Higher-Level Quantum Programming
	7.4 Quantum Computation Before Quantum Computers

	8 Theoretical Computer Science
	8.1 Deterministic and Nondeterministic Computations
	8.2 Probabilistic Computations
	8.3 Quantum Computations

	9 Cryptography
	9.1 Classical Cryptography
	9.2 Quantum Key Exchange I: The BB84 Protocol
	9.3 Quantum Key Exchange II: The B92 Protocol
	9.4 Quantum Key Exchange III: The EPR Protocol
	9.5 Quantum Teleportation

	10 Information Theory
	10.1 Classical Information and Shannon Entropy
	10.2 Quantum Information and von Neumann Entropy
	10.3 Classical and Quantum Data Compression
	10.4 Error-Correcting Codes

	11 Hardware
	11.1 Quantum Hardware: Goals and Challenges
	11.2 Implementing a Quantum Computer I: Ion Traps
	11.3 Implementing a Quantum Computer II: Linear Optics
	11.4 Implementing a Quantum Computer III: NMR and Superconductors
	11.5 Future of Quantum Ware

	Appendix A: Historical Bibliography of Quantum Computing
	A.1 Reading Scientific Articles
	A.2 Models of Computation
	A.3 Quantum Gates
	A.4 Quantum Algorithms and Implementations
	A.5 Quantum Cryptography
	A.6 Quantum Information
	A.7 More Milestones?

	Appendix B: Answers to Selected Exercises
	Appendix C: Quantum Computing Experiments with MATLAB
	C.1 Playing with MATLAB
	C.2 Complex Numbers and Matrices
	C.3 Quantum Computations

	Appendix D: Keeping Abreast of Quantum News: Quantum Computing on the Web and in the Literature
	D.1 Keeping Abreast of Popular News
	D.2 Keeping Abreast of Scientific Literature
	D.3 The Best Way to Stay Abreast?

	Appendix E: Selected Topics for Student Presentations
	E.1 Complex Numbers
	E.2 Complex Vector Spaces
	E.3 The Leap from Classical to Quantum
	E.4 Basic Quantum Theory
	E.5 Architecture
	E.6 Algorithms
	E.7 Programming Languages
	E.8 Theoretical Computer Science
	E.9 Cryptography
	E.10 Information Theory
	E.11 Hardware

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

